期刊文献+

基于凸包特征的细分曲面求交研究 被引量:4

Study of intersections for subdivision surface with convex hull
下载PDF
导出
摘要 主要针对具有凸包特征的细分曲面提出了一种有效的求交的方法,该方法适用于任意具有凸包特征的细分曲面中。该方法主要是利用二部图跟踪两个细分曲面中可能相交的面。在应用二部图的基础上,选择半边数据结构,应用轴向包围盒法进行相交检测,使得具有凸包特征的细分曲面的求交得以实现。 A efficient intersection method is presented to subdivide surfaces with convex hull. Consequently, the method can be used with any subdivision scheme that has the strong convex hull property. In this method, a bipartite graph structure is used to track potentially intersecting faces. Based on the bipartite graph structure, the convex hull property of subdivision surface intersections are successfully implemented by using axis-aligned bounding boxes and selecting half edge data structure.
作者 郑立垠 张丽
出处 《计算机工程与设计》 CSCD 北大核心 2008年第1期102-104,242,共4页 Computer Engineering and Design
关键词 细分曲面 细分曲面求交 二部图 轴向包围盒法 半边数据结构 subdivision surfaces subdivision surfaceintersections bipartite graphstructure axis-aligned bounding boxes half edge data structure
  • 相关文献

参考文献10

  • 1[1]Wu X,Peters J.Interference detection for subdivision surfaces[J].Computer Graphics Forum,2004,23(3):577-584.
  • 2[2]Grinspun E,Schroder P.Normal bounds for subdivision-surface interference detection[C].Proceedings of IEEE Scientific Visuali zation.California:IEEE Computer Society,2001:333-340.
  • 3[3]Lanquetin S,Foufou S,Kheddouci H,et al.Computing sub-division surface intersection[EB/OL],http://www.wscg.zcu.cz/ wscg2003/Papers_2003/HO2.pdf.
  • 4[4]Biermann H,Kristjansson D,Zorin D.Approximate boolean operations on free-form solids[C].Computer Graphics Procee-dings,Annual Conference Series.California:ACM SIGGRAPH,2001:185-194.
  • 5[5]Litke N,Levin A,Schroder P.Trimming for subdivision surfaces[J].Computer Aided Geometric Design,2001,18(5):463-481.
  • 6[6]Severn A,Samavati EFast intersections for subdivision surfaces[J].Compute science,2006,3980(5):91-100.
  • 7[7]Zhou Hai,Zhou Laishui.Novel method for exactly evaluating the energy of Catmull-Clark subdivision surfaces[J].Journal of Son-theast University,2005,21 (4):453-458.
  • 8[8]Vemori B C.Efficient and accurate collision detection for granular flow simulation[J].Graphical Models and Image Pro-cessing,1999,60(2):403-422.
  • 9[9]Zachmann G.Minimal hierarchical collision detection[C].Pro-ceedings of the ACM Symposium on Virtual Reality Software and Technology.USA:ACM Press,2002:121-128.
  • 10[10]Max McGuire.The half-odge data structure[EB/OL].http:// www.flipeoda.com/articles/article_halfedge.shtml.

同被引文献32

  • 1陈晓霞,雍俊海,陈玉健,刘辉.基于坐标变换的曲线曲面求交算法[J].计算机集成制造系统,2005,11(9):1327-1332. 被引量:4
  • 2Alan C Lin, hai-Temg Liu. Automatic generation of NC cutter path from massive data point [J]. Computer-Aided Design, 1998, 30 ( 1 ): 77-99.
  • 3Georg Glaeser, Johannes Wallner, Helmut Pottmann. Collision-free 3-axis milling and selection of cutting tools[J].Computer-AidedDesign, 1999, 31: 225-232.
  • 4梁伟文.Loop细分曲面的数控粗加工刀具路径生成方法[J].深圳职业技术学院学报,2007,6(3):3-6. 被引量:3
  • 5Nasri A. Polyhedral subdivision methods for free form surfaces [J]. ACM Transactions on Graphics, 1987, 6(1) :29-73.
  • 6Lanquetin S, Foufou S, Kheddouci H, etal. A graph based algorithm for intersection of subdivision surfaces [C] // Proceedings of Computational Science and Its Applications - ICCSA. Berlin: Springer-Verlag, 2003:387-396.
  • 7ZHU Xu-ping, HU Shi-ming, Tai Chiew-lan, et al. A marching method for computing intersection curves of two subdivision solids [M] // Mathematics of Surfaces XI. Berlin: Springer- Verlag, 2005:458-471.
  • 8Catmull E, Clark J. Reeursively generated B-spline surface on arbitrary topological meshes [J ]. Computer-Aided Design, 1978, 10(6) :350-355.
  • 9Halstead M, Kass M, DeRose T. Efficient, fair interpolation using Catmull-Clark surfaces [C] // Proceedings of the ACM SIGGRAPH '93 Conference on Computer Graphics. New York:ACM, 1993:35-44.
  • 10Kevin W. Edge-based data structures for solid modeling in curved-surface environments [J]. IEEE Computer Graphics and Applications, 1985, 5 ( 1 ) : 21-40.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部