期刊文献+

发酵法产氢培养基的响应面分析优化 被引量:37

Statistical Optimization of Process Parameters on Biohydrogen Production from Glucose by Clostridium sp.Fanp2
下载PDF
导出
摘要 借助于MINITAB软件,采用Plackett-Burman试验设计法及响应面法分析,对影响高效产氢菌Clostridium sp.Fanp2发酵产氢的培养基成分进行优化研究。首先利用Plackett Burman试验设计筛选出影响产氢的三个主要因素,即葡萄糖浓度、磷酸缓冲液浓度、和维生素液添加量。在此基础上用最陡爬坡路径逼近最大响应区域,再利用Box-Behnken试验设计及响应面分析法进行回归分析。结果表明,葡萄糖浓度、磷酸缓冲液浓度、和维生素液添加量与氢气产量存在显著的相关性,通过求解回归方程得到优化发酵条件:当葡萄糖浓度23.75g/L,磷酸缓冲液浓度0.159M和维生素液添加量13.3ml/L时,氢气产量达到理论最大值4187.7ml/L。经五批培养验证,预测值与验证试验平均值接近,在优化条件下微生物制氢产量提高85.3%。 Statistically based experimental designs were applied to optimizing process parameters for hydrogen production from glucose by Clostridium sp.Fanp2. The important factors influencing hydrogen production, which identified by initial screening method of Plaekett - Burman, were glucose, phosphate buffer and vitamin solution. The path of steepest ascent was undertaken to approach the optimal region of the three sig- nificant factors. Box - Behnken design and response surface analysis were adopted to further investigate the mutual interaction between the variables and identify optimal values that bring maximum hydrogen produc- tion. Experimental results showed that glucose, vitamin solution and phosphate buffer concentration all had significant influence on the specific hydrogen production potential (Ps). The optimal conditions for the maximal Ps were: glucose 23.75 g/L, phosphate buffer 0.159 M and vitamin solution 13.3 ml/L. After five batches cultivation, the maximum predicted value was consistent with mean value of verification test and the hydro- gen production increased 85.3% at optimized condition.
出处 《中国农学通报》 CSCD 2008年第1期38-44,共7页 Chinese Agricultural Science Bulletin
基金 国家重点基础研究发展规划(973)项目"秸秆类生物质微生物高效转化的基础研究"(2006CB708407)
关键词 发酵法制氢 响应面分析 Plackett Bumann设计法 CLOSTRIDIUM sp. statistical experimental designs, hydrogen production, Clostridium sp.Fanp2
  • 相关文献

参考文献10

  • 1Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Tech, 2006,38: 569-582.
  • 2Jung GY, Jung HO, KimJR, et al. Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnol Lett, 1999:21:525-529.
  • 3Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem, 2000,35:589-593.
  • 4胡运权.试验设计方法[M].哈尔滨:哈尔滨工业大学出版社,1997.153-154.
  • 5Francis F, Sabu A. Nampoothiri K.M. Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem Eng J, 2003,15: 107-115.
  • 6Fan YT, Zhang YH. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol, 2006, 97: 500-505.
  • 7Lay JJ, Li YY, Noike T. The influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res1997, 31(6):1518-1524.
  • 8Chen WM, Tseng ZJ, Lee KS, et al. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int.J.Hydrogen Energy,2005,30: 1063-1070.
  • 9Li C, Bai JH, Cai ZL. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology[J]. Journal of Biotechnology,2002,93: 27-34.
  • 10Oh Y-K, Seol E-H, Kim JR, Park S. Fermentative biohydrogen production by a new chemohetorotrophic bacterium Citrobacter sp. Y19. Int J Hydrogen Energy 2003,28:1353-1359.

共引文献2

同被引文献445

引证文献37

二级引证文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部