期刊文献+

基于鲁棒控制的管道噪声有源控制实验研究 被引量:2

Experimental Studies on Active Duct Noise Control Based on Robust Control
下载PDF
导出
摘要 以鲁棒控制理论为基础,详细研究了基于H∞鲁棒控制理论的有源控制器设计。同时,为了验证该鲁棒控制器的有效性,在消声室内以管道噪声为研究对象,进行了一系列相关实验验证。实验结果充分表明了该鲁棒控制器的控制性能。 A design of controller based on robust control is proposed. Because of secondary acoustic feedback and path uncertainty, the method overcomes the potential threat on the stability of the control system effectively. Experimental results of active duct noise control are demonstrated the effectiveness.
出处 《电声技术》 2008年第1期76-79,82,共5页 Audio Engineering
关键词 有源噪声控制 鲁棒控制 通路建模 active noise control robust control path modeling
  • 相关文献

参考文献5

  • 1ELLIOTT S. Signal processing for active control[M]. London:Academic Press, 2001.
  • 2BAI M R, LIN H H. Comparison of active noise control structures in the presence of acoustical feedback by using the H∞ synthesis technique[J]. Journal of Sound and Vibration, 1997,206 (4) : 453-471.
  • 3BAI M R, LIN Z. Active noise cancellation for a three- dimensional enclosure by using multiple-channel adaptive control and H∞ control[J]. Journal of Vibration and Acoustics, Transactions of the ASME, 1998,120:958-964.
  • 4BAI M R, LEE D. Implementation of an active headset by using the H∞ robust control theory[J]. Journal of the Acoustics Society of American, 1997,102(4) :2 184-2 190.
  • 5LJUNG L. System identification:theory for the user[M]. Englewood Cliffs, NJ: Prentice-Hall, 1987.

同被引文献18

  • 1孙琎烨,陈克安.一种应用于多通道自适应有源控制的快速算法[J].电声技术,2006,30(1):52-56. 被引量:2
  • 2韩立群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2007.
  • 3段海滨.蚁群算法及其应用[M].北京:科学出版社,2005:98-101.
  • 4李晓燕.基于神经网络的自适应噪声抵消的研究[D].武汉:武汉理工大学,2010.
  • 5苏畅,徒君.一种自适应最大最小蚁群算法[J].模式识别与人工智能,2007,20(5):688-691. 被引量:14
  • 6SOCHA K, BLUM C. An ant colony optimization algorithm for continuous optimization: application to feed - forward neural training [ J 1. Neural Computing and Applications, 2007,16 (3) :235 - 247.
  • 7MADADGAR S, AFSHAR A. An improved continuous ant algorithm for optimization of water resources problems [J ]. Water Resources Management ,2009,23 (10) :2119 - 2139.
  • 8GUAN Kai,WEI Zhiqiang,YIN Bo.SOC Prediction Method of a New Lithium Battery Based on GA-BP Neural Network[M]. Springer International Publishing,2015:141-153.
  • 9HAO Gang.Study on Prediction of Urbanization Level Based on GA-BP Neural Network[ M ].Atlantis Press, 2015:521-524.
  • 10ZHANG Yilong,CAI Yajun,WU Huanhuan.Research on Cost Estimation of Highway Project Based on the GA-BP Algorithm [ M ].Springer Berlin Heidelberg, 2015 : 451-462.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部