期刊文献+

无线传感器网络动态节点选择优化策略 被引量:18

Dynamic Sensor Selection Optimization Strategy for Wireless Sensor Networks
下载PDF
导出
摘要 无线传感器网络的能耗和有效覆盖率是衡量其性能的两个重要指标.无线传感器网络动态节点选择优化策略通过合理配置各无线传感器节点状态,平衡网络能耗和有效覆盖率,提高网络能效性,延长网络寿命.提出一种结合了Hopfield网络与遗传算法的动态节点选择优化策略,简称为HN-GA.该策略通过遗传算法实现全局搜索,采用Hopfield网络缩小遗传算法的搜索范围,保证遗传算法中每个基因对应待选解的有效性,并针对动态节点选择优化提出一种基于无线传感器网络能耗、寿命和有效覆盖率的综合指标.仿真实验表明,HN-GA算法能有效完成无线传感器网络动态节点选择优化,并在确保网络有效覆盖率的前提下,通过动态配置各无线传感器节点状态,降低网络能耗,延长网络寿命.与遗传算法和Hopfield网络相比,HN-GA算法不仅全局搜索能力强,且收敛速度快、耗时少. Energy consumption and effective coverage rate are both significant problem in wireless sensor networks (WSNs). The dynamic sensor selection optimization strategy refers to the optimization of the tradeoff between energy consumption and effective coverage rate, which is adopted to enhance energy efficiency, enlarge the effective coverage rate and prolong the lifetime of WSN. A strategy for dynamic sensor selection optimization, called HN-GA, is proposed, which uses the genetic algorithm (GA) to implement global searching and adopts the Hopfield network (HN) to reduce the search space of genetic algorithm and ensure the validity of each gene. In terms of evaluating the optimized sensor selection results, a combined metric is introduced, which is based on several practically feasible measures of the energy consumption and the effective coverage rate. The simulation results verify that the proposed HN-GA algorithm performs well in dynamic sensor selection optimization strategy. Under the guidance of HN-GA based dynamic sensor selection optimization strategy, the lifetime and the effective coverage performance of WSN can be significantly improved. Compared with GA algorithm and HN, HN-GA has better performance on regional convergence and global searching. It can achieve dynamic sensor selection optimization more efficiently and rapidly.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第1期188-195,共8页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展规划基金项目(2006CB303000) 国家自然科学基金项目(60673176 60373014 50175056)~~
关键词 无线传感器网络 节点选择 遗传算法 HOPFIELD网络 能效覆盖 wireless sensor networks sensor selection genetic algorithm Hopfield network energy efficient coverage
  • 相关文献

参考文献12

  • 1C Chong, S P Kumar. Sensor networks: Evolution, opportunities, and challenges [J]. Proc of the IEEE, 2003, 91 (8) : 1247-1256.
  • 2X Wang, S Wang. An improved particle filter for target tracking in sensor system [J]. Sensors, 2007, 7(1) : 144-156.
  • 3X Wang, J Ma, S Wang. Prediction-based dynamic power optimization in wireless sensor networks [J]. Sensors, 2007, 7 (3): 251-266.
  • 4毛莺池,龚海刚,刘明,陈道蓄,谢立.ELIQoS:一种高效节能、与位置无关的传感器网络服务质量协议[J].计算机研究与发展,2006,43(6):1019-1026. 被引量:14
  • 5王雪,王晟,马俊杰.无线传感网络移动节点位置并行微粒群优化策略[J].计算机学报,2007,30(4):563-568. 被引量:37
  • 6R A Burne, A L Buczak, Y C Jin. A self-organizing, cooperative sensor network for remote surveillance: Current result [C]. The 13th Annual Int'l Symp on AeroSense Conference, Orlando, USA, 1999.
  • 7X Wang, A G Jiang, S Wang. Mobile agent based moving target methods in wireless sensor networks [C]. In: Proc of IEEE Int'l Symp on Communications and Information Technology. Harbin: Harbin Institute of Technology Press, 2004. 22-26.
  • 8Y Shrivastava, S Dasgupta, S M Reddy. Guaranteed convergence in a class of Hopfield networks [J] . IEEE Trans on Neural Networks, 1992, 3(6): 951-961.
  • 9S J Li, C F Xu, W K Pan, et al. Sensor deployment optimization for detecting maneuvering targets [C]. In: Proc of the 7th Int'l Conf on Information Fusion. Piscataway, NJ: IEEE Press, 2005. 1629-1635.
  • 10T Okuma, T Ishihara, H Yasuura. Real-time task scheduling for a variable voltage processor [C]. In: Proc of the 12th Int'l Symp on System Synthesis. Los Alamitos, CA: IEEE Computer Society Press, 1999. 24-29.

二级参考文献26

  • 1屈玉贵,翟羽佳,蔺智挺,赵保华,张英堂.一种新的无线传感器网络传感器放置模型[J].北京邮电大学学报,2004,27(6):1-5. 被引量:24
  • 2E, Shih, S, Cho, N, Ickes, et al.Physical layer driven protocol and algorithm design for energy-efflcient wireless sensor networks.The 7th Annual Int'l Conf. Mobile Computing and Networking(MobiCom 01), Rome, Italy, 2001
  • 3D. Tian, N. Georganas. A coverage-preserved node scheduling scheme for large wireless sensor network. The 1st Int'l Workshop on Wireless Sensor Networks and Applications (WSNA' 02),Atlanta, USA, 2002
  • 4F. Ye, G. Zhong, S. Lu, et al. PEAS: A robust energy conserving protocol for long-lived sensor networks. The 23rd Int'l Conf. Distributed Computing Systems (ICDCS), Providence,USA, 2003
  • 5S. Slijepcevic, M. Potkonjak. Power efficient organization of wireless sensor networks. The IEEE Conf. Communications,Hetsinki, Finland, 2001
  • 6M. Cardei, D. MarCallum, X. Cheng, et al. Wireless sensor networks with energy efficient organization. Journal of Interconnection Networks, 2002, 3(3/4): 213-229
  • 7Y. Xu, J. Heidemann, D. Estrin. Geography informed energy conservation for ad hoc routing. ACM MOBICOM' 01, Rome,Italy, 2001
  • 8H. Zhang, J. G. Hou. Maintaining scheme coverage and connectivity in large sensor networks. The NSF Int'l Workshop on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks, Chicago, USA, 2004
  • 9Hidayet Ozgur Sanli, Hasan Cam. Energy efficient differentiable coverage service protocols for wireless sensor networks. The 3rd IEEE Int'l Conf. Pervasive Computing and Communications(PerCom 2005), Kauai Island, Hawaii, 2005
  • 10G. Xing, C. Lu, R. Pless, et al. Co-Grid: An efficient coverage maintenance protocol for distributed sensor networks. The 3rd Int'l Symposium on Information Processing in Sensor Networks(IPSN'04), Berkeley, CA, 2004

共引文献49

同被引文献133

引证文献18

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部