期刊文献+

一类含H-增生算子的广义集值变分包含(英文)

Generalized Set-valued Variational Inclusions with H-accretive Operators
下载PDF
导出
摘要 首先介绍了Banach空间中的一类含H-增生算子的广义集值变分包含问题(GSVVIP)和广义预解算子方程问题(GREP),并且建立了二者的等价关系.然后分别构造了新的迭代算法来逼近(GSVVIP)的解和(GREP)的解并且证明了其解的存在性以及它们的收敛性结论. In this paper, a new class of generalized set-valued variational inclusions problem (GSV-VIP) involving H-accretive operators and a new class of generalized resolvent equations problem (GREP) in Banach spaces are introduced and studied, we also establish the equivalent relation bet,.veen (GSVVIP) and (GREP). The iterative algorithms for finding the solutions of (GSVVIP) and (GREP) are proposed and its convergence results are established, respectively.
出处 《数学研究》 CSCD 2007年第4期343-355,共13页 Journal of Mathematical Study
基金 This research is partially supported by the National Natural Science Foundation of Chi-na(Grant No.10171118) Education Committee Project Research Foundation of Chongqing(GrantNo.8409)
关键词 广义集值变分包含 广义预解算子方程 H-增生算子 迭代算法 Generalized set-valued variational inclusion generalized resolvent equation H-accretive operator iterative algorithm
  • 相关文献

参考文献8

  • 1Fang Y P, Huang N J. H-accretive operators and resolvent operator technique for solving variational inclusions in Banach space. Appl. Math. Lett, 2004, 17:647-653.
  • 2Xu Z B, Roach G F. Characteristic inequalities uniformly convex and uniformly smooth Banach spaces. J. Math. Anal. Appl. 1991, 157:189-210.
  • 3Peng J W. Set-valued variational inclusions with T-accretive operators in Banach spaces. Applied Mathematics Letters, 2006, 19: 237-282.
  • 4Ahmad R, Ansari Q H, Irfan S S. Generalized variational inclusions and generalized resolvent equations in Banach spaces. Gomputers and Mathematics with Applications. 2005. 49:1825-1835.
  • 5Chang S S, Jim F K, Kim K H. On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach spaces. J. Math. Anal. Appl. 2002, 268:89-108.
  • 6Nadler S B. Multi-valued contraction mappings. Pacific J. Math. 1969, 30:475-488.
  • 7Chang S S, Cho Y J, Lee B S, Jung I H. Generalized set-valued variational inclusions in Banach space. J. Math. Anal. Appl, 2000, 246:409-422.
  • 8Chang S S. Set-valued variational inclusions in Banach spaces. J. Math. Anal. Appl, 2000, 248:438-454.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部