摘要
The synthesis and up-conversion luminescent properties of YTaO4:Er3+ and YTaO4:Er3+/Yb3+ are re- ported for the first time. According to the measurement results of up-conversion spectra, Yb3+ co-doping can remarkably enhance the green (2H11/2/4S3/2→4I15/2) and red (4F9/2→4I15/2) emissions, but de- press the infrared emission (4I9/2→4I15/2). With the increase of the Yb3+ concentration, the intensity of green emission increases, after that, when the Yb3+ concentration increases continuously, the intensity of green emission decreases, while those of the red and infrared emissions increase and decrease alternately. In addition, the up-conversion mechanisms of Er3+ doped and Er3+/Yb3+ co-doped YTaO4 are also discussed. It is found that the transform of up-conversion mechanism from two-step energy transfer to cooperating sensitization takes place when Yb3+ concentration is increased up to 12 mol%. With the further increase of Yb3+ concentration, the energy-back-transfer gradually becomes the dominant up-conversion mechanism, which results in the quenching of the green emission and slight increasing of the red and infrared emissions.
The synthesis and up-conversion luminescent properties of YTaO4:Er^3+ and YTaO4:Er^3+/Yb^3+ are reported for the first time. According to the measurement results of up-conversion spectra, Yb^3+ co-doping can remarkably enhance the green (^2H11/2/^4S3/2→^4I15/2) and red (^4F9/2→^4I15/2) emissions, but depress the infrared emission (^4I9/2→^4I15/2). With the increase of the Yb^3+ concentration, the intensity of green emission increases, after that, when the Yb^3+ concentration increases continuously, the intensity of green emission decreases, while those of the red and infrared emissions increase and decrease alternately. In addition, the up-conversion mechanisms of Er^3+ doped and Er^3+/Yb^3+ co-doped YTaO4 are also discussed. It is found that the transform of up-conversion mechanism from two-step energy transfer to cooperating sensitization takes place when Yb^3+ concentration is increased up to 12 mol%. With the further increase of Yb^3+ concentration, the energy-back-transfer gradually becomes the dominant up-conversion mechanism, which results in the quenching of the green emission and slight increasing of the red and infrared emissions.
基金
the National Natural Science Foundation of China (Grant No. 10374011)
关键词
上升转换率
能量转换
协同感光
能量回转
up-conversion, energy transfer, cooperating sensitization, energy-back-transfer