期刊文献+

四元数矩阵正交特征向量系的求解方法及其在彩色人脸识别中的应用 被引量:13

Obtain Method of Quaternion Matrix Orthogonal Eigenvector Set and Its Application in Color Face Recognition
下载PDF
导出
摘要 针对四元数矩阵正交特征矢量系求解困难的缺点,本文提出一种获取四元数矩阵正交特征矢量集等效、便捷的方法,其基本思路为:首先,构造四元数矩阵定义于复数域的导出阵,并利用该导出阵特征矢量空间的一种特殊的等价空间间接获取相应特征值所对应的特征矢量.然后,将复数矢量转换为四元数矢量,按如此方式获取的对应所有特征值的非零特征矢量则构成原始四元数矩阵的正交特征矢量系.同时,本文将定义于实数域的主成分分析方法(Principal component algorithm,PCA)向四元数体作合理的推广,给出详细的数学推导过程,证明该方法的合理性及其在统计模式识别领域得以应用的可能性.最后,作者将彩色图像像素的R、G、B三分量作为四元数的三个虚数部分,首次在人脸识别中引入基于四元数的彩色人脸识别方法.较传统的基于灰度图像的识别方法,本文方法不仅利用了人脸图像灰度值的空间分布信息,而且充分利用不同人脸之间的色彩差异,从而得到更多的鉴别信息.在四川大学人工智能研究所的彩色人脸库上进行的实验表明,所提出的基于四元数的识别方法不仅大幅度提高了识别率,而且具有较高的鲁棒性. Considering the difficulty of obtaining orthogonal eigenvector set of quaternion matrix, a novel obtaining method is proposed in this paper. The main idea of this method can be described as follows. Firstly, construct the educing matrix of quaternion matrix, which is defined in complex field, secondly get complex eigenvector by using a specific space, which is similar to the eigenvector space of the educing matrix, then the orthogonai eigenvector set can be obtained through transforming the eigenvectors of all eigenvalues to quaternion eigenvectors. Simultaneously, quaternionbased principal component algorithm (PCA) method is proposed and detailed mathematical calculations are also given to explain its rationality and practicability in pattern recognition field. Finally, quaternion-based color face recognition method, which uses R, G, B as the three imaginary numbers of quaternion, is proposed in the paper. Compared with the traditional method, our algorithm uses face grayscale information and color information at the same time in order to get more discrimination information. Experiments performed on color face database of TianSi brainpower graduate school of Sichuan University indicate that the recognition rates are improved significantly and the proposed method is superior to the traditional one in the mass.
出处 《自动化学报》 EI CSCD 北大核心 2008年第2期121-129,共9页 Acta Automatica Sinica
基金 教育部博士点基金(20020610013)资助~~
关键词 四元数空间 广义主成分分析方法 自共轭矩阵 模式分类 彩色人脸识别 Quaternion space, general principal component algorithm, quaternion self-conjugate matrix, classification, color face recognition
  • 相关文献

参考文献9

  • 1[1]Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs.Fisherfaces:recognition using class specific linearprojection.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720
  • 2[2]Howland P,Park H.Generalizing discriminant analysis using the generalized sigular value decomposition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(8):995-1006
  • 3[3]Nakamura O,Mathur S,Minami T.Identification of human faces based on isodensity maps.Pattern Recognition,1991,24(3):263-272
  • 4[4]Lads M,Vorbuggen J C,Buhmann J,Lange J,Malsburg C,Konen W.Distortion invariant object recognition in the dynamic link architecture.IEEE Transactions on Computers,1993,42(3):300-311
  • 5[5]Samaria F,Young S.HMM-based architecture for face identification.Image and Vision Computing,1994,12(8):537-543
  • 6[6]IEEE Criteria for Class IE Electric System,IEEE Standard 308,1969
  • 7[10]Le Bihan N,Sangwine S J.Quaternion principal component analysis of color iamge.In:Proceedings of International Conference on Image Processing.Barcelona,Spain:IEEE,2003.809-812
  • 8[11]Rajapakse M,Tan J,Rajapakse J.Color channel encoding with NMF for face recognition.In:Proceedings of International Conference on Image Processing.Singapore,Singapore:IEEE,2004.2007-2010
  • 9[14]Duda R O,Hart P E,Stork D G[Author],Li Hong-Dong,Yao Tian-Xiang[Translator].Pattern Classification.Beijing:China Machine Press,2003(Duda R O,Hart P E,Stork D G[著],李宏东,姚天翔[译].模式分类.北京:机械出版社,2003)

同被引文献85

  • 1郎方年,周激流,宋恩彬,何坤,钟钒.广义Rayleigh商在四元数体中的推广及其在图象信息融合中的应用[J].激光杂志,2006,27(3):39-40. 被引量:3
  • 2黎云汉,朱善安,祝磊.基于四元数主成分分析的人脸识别算法[J].信号处理,2007,23(2):214-216. 被引量:6
  • 3冉瑞生,黄廷祝.基于奇异值特征提取的彩色人脸识别[J].计算机应用研究,2007,24(7):298-299. 被引量:10
  • 4Sirovitch L,Kirby M.Low-dimensional procedure for the charac- terization of hu-man face[J].Joumal of the Optical Society of Amer- ica, 1987,4(3) :519-524.
  • 5Turk M, Pentland A.Eigenfaces for recognition[J].Joumal of Cog- nitive Neuroscience, 1991,3 ( 1 ) : 71-86.
  • 6Yang J, Zhang David, Yang J Y.Two-dimensional PCA: a new approach to a appe-arance based face representation and recog- nition[J].IEEE Trans on Pattern Analysis and Machine Intelli- gence, 2004,26 ( 1 ) : 131-137.
  • 7Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs Fish- erface: recognition using class specific linear projection[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(7) : 711-720.
  • 8Rowley H A, Baluja S, Kanade T.Neural network-based face de- tection[J].IEEE Trans on Pattern Analysis and Machine Intelli- gence, 1998,20( 1 ) :23-28.
  • 9Ding Lijun, Feng Hao.Quatemion K-L transform and biomimetic pattern recognition approaches for color-face reeognition[C]//Proc of IEEE International Conference on Intelligent Computing and Intelligent Systems,2009,1 : 165-169.
  • 10Lu Wei,Xu Yi.Local Quatemionic Gabor binary patterns for col- or face recognition[C]//Proc of IEEE International Conference on Acoustics,Speech and Signal Processing,2008:741-744.

引证文献13

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部