期刊文献+

纳米晶柱热稳定性研究 被引量:2

A STUDY ON THERMAL STABILITY OF NANOCRYSTALLINE PILLARS
下载PDF
导出
摘要 以纳米晶柱作为表面量子点的模型,以不同截面尺寸的Al纳米晶柱为例,对其在不同温度下的弛豫过程进行了一系列分子动力学模拟,采用了Ercolessi等建立的原子镶嵌势计算原子间的相互作用力.结果表明:对于沿相互垂直的{110}和{211}面切割形成的近正方形截面晶柱,其截面厚度存在一热稳定性转变临界值.小于该值时纳米晶柱迅速失稳,发生熔融-重结晶的过程;大于该值时只发生缓慢的表面原子迁移重组.两种情况下形成的稳定结构均为由{111}和{100}面组成的正多面体纳米岛,只是两种面的相对面积比有所不同;该临界尺寸随温度升高而呈近线性增大.模拟结果还显示,纳米晶柱的高度对其稳定性没有明显影响. Using nanocrystalline pillars as models of surface quantum dots, and Al nanocrystalline pillar as example, the relaxation processes of the pillars with different sizes at different temperatures have been simulated by molecular dynamics. An EAM potential developed by Ercolessi was used to calculate the inter-atomic forces. The results show that, for nanocrystalline pillars with near-square cross section and with {110} and {211} planes as side surfaces, there exists a critical size for stability transition. The nano-pillars with thickness lower than the critical size melted quickly and then recrystallized, while those with thickness larger than the critical size will be slowly reconstructed by surface migration of atoms. The reconstructed stable structures, through either the melt-recrystallization or surface migration, are polyhedrons consisting of {111} and {100} surfaces with different ratios of the areas. The critical size increases linearly with raising temperature. The simulations also show that the stability of the nanocrystalline pillars is insensitive to their height.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2008年第1期34-38,共5页 Acta Metallurgica Sinica
基金 国家自然科学基金10502024~~
关键词 纳米晶柱 量子点 热稳定性 分子动力学 nanocrystalline pillar, quantum dot, thermal stability, molecular dynamics
  • 相关文献

参考文献22

  • 1Gilmer G H, Huang H C, Roland C. Comput Mater Sci, 1998; 12:354
  • 2Seifert W, Carlsson N, Miller M, Pistol M E. Prog Cryst Growth Charact Mater, 1996; 33:423
  • 3Zhang Z K. Cui Z L, Chen K Z, Wang Y N, Ning Y P.Chin Sci Bull, 1997; 42:1535
  • 4Goldstein A N, Echer C M, Alivisatos A P. Science, 1992; 256:1425
  • 5Jin-Phillipp N J, Du K, Phillipp F, Zundel M, Eberl K. J Appl Phys, 2002; 91:3255
  • 6Leon R, Kim Y, Jagadish C, Gal M, Zou J, Cockayne D J H. Appl Phys Lett, 1996; 69:1888
  • 7Shim J H, Lee B J, Cho Y W. Surf Sci, 2002; 512:262
  • 8Dong H, Moon K S, Wong C P. J Electron Mater, 2005; 34:40
  • 9Wu H A. Comput Mater Sci, 2004; 31:287
  • 10Lie W C, Acosta A S, Fujioka H, Mano T, Mitsui T, Takeuchi M, Oshima M. J Cryst Growth, 2001; 229:615

二级参考文献5

共引文献19

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部