期刊文献+

属性构造原则与时序计数算子的研究 被引量:1

Study on the Attribute Construction Rules and Time-Serial Count Operators
下载PDF
导出
摘要 包括计数算子在内的属性构造技术往往能够提高数据挖掘模型的预测精度,但不加条件地使用会导致属性关系不一致问题.为解决此问题,在提出了属性关系一致等3个属性构造原则后,给出了在时序相关模型下避免属性关系不一致问题的新算法——时序计数算子.时序增量计数算子在满足其假设条件下,可以较小的代价显著地降低时序计数算子的高计算成本.实验结果验证了上述结论. Although count operator was used effectively in the process of data preprocessing, abusive use would cause the inconsistent problem of attribute relationship. To solve that problem, after proposing three attribute construction rules, time-serial count operator, a new algorithm for time-serial correlative model without inconsistent problem of attribute relationship is proposed. The time-serial increment count operator can remarkably reduce the high computing cost of time-serial count operator if the assumption is satisfied. The results of experiments prove the above conclusion.
作者 邵华 赵宏
出处 《软件学报》 EI CSCD 北大核心 2008年第2期351-357,共7页 Journal of Software
基金 Supported by the National High-Tech Research and Development Plan of China under Grant No.2002AA113020 (国家高技术研究发展计划(863))
关键词 属性构造 计数算子 属性关系一致原则 时序数据预处理 attribute construction count operator attribute relationship consistency rule preprocessing of time-serial data
  • 相关文献

参考文献2

二级参考文献14

  • 1Fayyad U, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery: An overview[A]. Advances in Knowledge Discovery and Data Mining[C]. USA:AAAI/MIT Press,1996.
  • 2Barnet V, Lewis T. Outliers in statistical data[M]. New York: John Wiley & Sons,1994.
  • 3Edwin Knorr, Roymond Ng. Algorithms for mining distance-based outliers in large databases[A]. Proc of the VLDB Conf[C]. New York:1998.392-403.
  • 4A Arning, Rakesh Agrawal, P Raghavan. A linear method for deviation detection in large database[A]. Int Conf on Knowledge Discovery in Databases and Data Mining[C]. Portland,1996.164-169.
  • 5N Roussopoulos, S Kelley, F Vincent. Nearest neighbour queries[A]. Proc of ACM SIGMOD[C]. San Jose: ACM Press,1995.71-79.
  • 6Piatetsky-Shapiro G, Fayyad U, Smyth P. From data mining to knowledge discovery: An overview. In: Fayyad U,Piatetsky-Shapiro G, Smyth P et al Eds. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press,1996. 1~35
  • 7Barnet V, Lewis T. Outliers in Statistical Data. New York: John Wiley & Sons, 1994
  • 8Edwin Knorr, Roymond Ng. Algorithms for mining distance-based outliers in large databases. In: Proceedings of the VLDB Conference, New York, USA: 1998. 392-403
  • 9Arning, Rakesh Agrawal, Raghavan P. A linear method for deviation detection in large database. In: International Conference on Knowledge Discovery in Databases and Data Mining (KDD-95), Portland, Oregon: AAAI Press,1996. 164~169
  • 10Bentley J L. K-d trees for semidynamic point sets. In: Proceedings of the 6th ACM Annual Symposium Computational Geometry, 1990. 187-197

共引文献27

同被引文献7

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部