期刊文献+

基于支持向量机的径向基网络结构优化 被引量:7

RBF Neural Network structure optimization method based on SVM
下载PDF
导出
摘要 为了解决径向基网络(RBFNN)结构设计的随机性,进一步优化RBF网络性能,提出一种基于支持向量机(SVM)的径向基网络结构优化方法。通过训练得到的SVM确定径向基网络的隐层节点个数、隐层权值和阈值;同时利用SVM对输入向量进行特征变换,进一步对输入向量进行维数约简。通过齿轮箱的故障诊断实验表明,优化后的RBF网络具有更精简、稳定的网络结构,能得到更准确的诊断结果。 An approach of Radial Basis Function Neural Network(RBF NN) optimization based on support vector machine was proposed to solve the randomness of the network structure and the unstableness of the network's performance.The number of the hidden neurons,the value of the weight and bias in RBF neural network are determined by the trained SVM.The approach is adopted in modeling and diagnosing the fault of gear case.In the experiment,the input vectors are transformed with the SVM character extraction approach firstly and then trained with the optimized RBF.Experimental results indicate that the optimized RBF network can obtain stable performance and more accurate diagnosis.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第5期67-69,78,共4页 Computer Engineering and Applications
基金 江西省科技公关计划(the Key Technologies R&D Program of Jiangxi Province China under Grant No.20041B100100) 江西省科技支撑计划(2007)
关键词 支持向量机 径向基网络 特征变换 故障诊断 Support Vector Machine Radial Basis Function Neural Network character transform machinery fault diagnosis
  • 相关文献

参考文献8

  • 1李国友,姚磊,李惠光,吴惕华.基于优化的RBF神经网络模式识别新方法[J].系统仿真学报,2006,18(1):181-184. 被引量:22
  • 2Binchini M,Frosconi P,Goni M.Learning without local minima in Radial basis function networks[J].IEEE Transcations Neural Networks. 1995,6( 3 ) : 749-755.
  • 3Broomhead D S,Lowe D.Multi variable functional interpolation and adaptive networks[J].Complex System, 1988,2: 321-355.
  • 4邵克勇,高宏宇,于显利,杨圆圆,张会珍.基于径向基神经网络的非线性系统自适应控制[J].大庆石油学院学报,2006,30(1):85-87. 被引量:3
  • 5Vapnik V N.An overview of statistical learning theory[J].IEEE Trans on Neural Networks,1999(10).
  • 6CritianiniN,Shawe-taylor J、支持向量机导论[M].李国正,王猛,曾华军,译.北京:电子工业出版社,2004.
  • 7Andras P.The equivalence of support vector machine and regular-izatlon neural networks[J].Neural Processing Letters,2002(15).
  • 8马云潜,张学工.支持向量机函数拟合在分形插值中的应用[J].清华大学学报(自然科学版),2000,40(3):76-78. 被引量:32

二级参考文献16

  • 1张秀艳,王秀芳,陶国彬.RBF神经网络在非线性滤波中的应用[J].大庆石油学院学报,2004,28(4):81-83. 被引量:5
  • 2于占东,王庆超.一类不确定非线性系统反步自适应神经网络控制研究[J].控制与决策,2004,19(5):561-564. 被引量:6
  • 3高丙坤,李强,姜建国.基于RBF神经网络的自适应逆控制[J].大庆石油学院学报,2005,29(5):104-105. 被引量:1
  • 4付光杰,曲玉辰,郭静.RBF神经网络在谐波检测中的应用[J].大庆石油学院学报,2005,29(6):76-79. 被引量:3
  • 5A Jonathan Howell,Hilary Buxton.Learning identity with radial basis function networks [J].Neurocomputing,1998,20:15-34.
  • 6Chen S,Cowan C F N,Grant P N.Orthogonal least squares learning algorithms for radial basis function networks[J].IEEE Trans.Neural Networks.1991,2(2):302-309.
  • 7Orr M J L.Regularization in the selection of radial basis function centers[J].Neural Computation,1995,7:606-623.
  • 8Joannou D,Huda W,Laine A F.Circle Recognition through a 2D Hough transform and radius histogramming[J].Image and vision computing,1999,17:15-26.
  • 9SHUZHI S G.Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback[J].IEEE Transactions On Neural Networks,2003,14(4):900-918.
  • 10SHUZHI S G,WANG Cong.Direct adaptive NN control of a class of nonlinear systems[J].IEEE Transactions On Neural Networks,2002,13(1):214-221.

共引文献53

同被引文献80

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部