期刊文献+

基于小生境遗传算法的连续属性关联规则挖掘 被引量:3

Association rules mining from data with continuous attributes based on niche genetic algorithm
下载PDF
导出
摘要 对连续属性数据进行关联规则提取是一个重要的课题,构造了一种新的遗传算法模型,在结构上采用三段式染色体,将连续属性离散化、属性约简和关联规则提取集成在一起,并将小生境引入到遗传算法中避免"早熟"现象。实验表明了该算法是有效的。 Discovery of association rules from data with continuous attributes is an important problem.In this paper,a new model of genetic algorithm with three-segment chromosomes is formulated for solving this problem.This algorithm integrates the discretization,reduction and mining association rules.And niche technology is introduced into genetic algorithm to avoid premature phenomenon.The experiment shows that the algorithm is correct and effective.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第5期184-186,共3页 Computer Engineering and Applications
关键词 关联规则 遗传算法 离散化 三段结构染色体 小生境 association rules genetic algorithm discretization three-segment chromosomes niche
  • 相关文献

参考文献6

  • 1Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]//Proc 1993 ACM SIGMOD Conference on Management of Data,Washington D C, 1993:207-216.
  • 2Han J W Kamber M 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版杜,2001.147-158.
  • 3Rastogi R,Shim K.Mining optimized association rules with categorical and numeric attributes[J].IEEE Transaction on Knowledge and Data Engineering, 2002,14( 1 ) : 29-50.
  • 4赵军,张显跃.基于粗集理论的数据离散化技术研究[J].重庆邮电学院学报(自然科学版),2006,18(6):752-757. 被引量:14
  • 5王小平,曹立明.遗传算法—理论应用和软件实现[M].西安:西安交通大学出版社,2001:74-76.
  • 6宁伟,赵明清.关于决策表离散化贪心算法的进一步改进[J].计算机工程与应用,2007,43(3):173-174. 被引量:10

二级参考文献32

  • 1谢宏,程浩忠,牛东晓.基于信息熵的粗糙集连续属性离散化算法[J].计算机学报,2005,28(9):1570-1574. 被引量:134
  • 2王利,王国胤,吴渝.基于可变精度粗集模型的增量式规则获取算法[J].重庆邮电学院学报(自然科学版),2005,17(6):709-713. 被引量:8
  • 3ZdzislawPawlak,JerzyGrzymala-Busse,RomanSlowinski,WojciechZiarko,刘真.Rough集[J].计算机科学,1997,24(1):15-19. 被引量:8
  • 4SIMON H A.The Sciences of the Artificial[M].2ed.MA:MIT Press,1981.
  • 5KAUFMAN K A,MICHALSKI R S.Learning in an Inconsistent World:Rule Selection in AQ18[R].Machine Learning and Inference Laboratory of George Mason University,1999.
  • 6CIOS K J,KURGAN L.Hybrid Inductive Machine Learning:An Overview of CLIP Algorithms[EB/OL].[2006-06-25].http://isl.cudenver.edu/Publications/Papers/HybridInductiveMachineLearningAnOverview-OfCLIPAlgorithms.pdf.
  • 7CLARK P,NIBLETT T.The CN2 Algorithm[J].Machine Learning,1989,3 (4):261-283.
  • 8JOACHIMS T.A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization[C]//.Proc of the 14^th International Conference on Machine Learning,San Francisco:Morgan Kaufmann,1997:143-151.
  • 9QUINLAN J R.C4.5:Programs for Machine Learning[C]//.Proc of the 12^th International Conference on Machine Learning,San Francisco:Morgan Kaufmann,1995:194-202.
  • 10DOUGHERTY J,KOHAVI R,SAHAMI M.Supervised and Unsupervised Discretization of Continuous Features[C]//.Proc of the 12th International Conference on Machine Learning,San Francisco:Morgan Kaufmann,1995:194-202.

共引文献133

同被引文献33

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部