期刊文献+

一种室内环境的运动目标检测混合算法 被引量:11

Hybrid moving-object detection algorithm for indoor environment
下载PDF
导出
摘要 室内环境中光照、背景等变化虽然不如外界自然环境那么复杂,但是它们对于运动物体的检测也将产生显著影响。归类分析了室内照明条件与背景变化的不同类型,以及它们对于运动目标检测的影响,在此基础上提出一种能够较好适应室内环境变化的运动目标检测混合算法。该算法结合了帧间差分与背景模型算法的优点,同时引入亮度信息进行前序的处理;因此算法针对不同室内环境都具有较高的鲁棒性。通过仿真实验,证明了该算法的实时性与可靠性。 The changes of indoor illumination and background are not so complex as outdoors.However,their disturbance can also influence the detection of moving objects greatly.This paper analyzed the influence of different illumination conditions and background changes to the moving-object detection in detail.Therefore,it proposed a new hybrid moving-object detection algorithm that could adapt indoor environment changes rapidly.With the illumination information processing as former procedure,this algorithm combined the merits of background subtraction method and symmetrical differencing method.Thus it has much robust to the changing of indoor environment.The experimental results verified the real-time and reliability of the algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第5期239-241,共3页 Computer Engineering and Applications
基金 湖南教育厅资助科研课题(the Research Project of Department of Education of Hunan Province,China under Grant No.05C411) 湖南师范大学博士科研启动基金资助项目(No.I050602)
关键词 运动目标检测 光照变化 背景变化 混合高斯模型 moving-object detection :illumination change background change Mixture of Guassian(MoG)
  • 相关文献

参考文献6

  • 1Barron J,Fleet D,Beauchemin S.Performance of optical flow techniques[J].lntemational Journal of Computer Vision, 1994, 12 ( 1 ) : 42-77.
  • 2Anderson C,Burt P,van der Waals G.Change detection and tracking using pyramid transformation techniques[C]//Proc of SPIE-intelligent Robots and CompUter Vision,1985,579:72-78.
  • 3Mittal A,Paragios N.Motion based background subtraction using adaptive kernel density estimation[C]//CVPR,2004-04: 302-309.
  • 4Haritaoglu I,Harwood D,Davis L S.W4:real-time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8 ) : 809-830.
  • 5Stauffer C,Grimson W.Adaptive background mixture models for Real-time tracking[C]//Int Conf Computer Vision of Pattern Recognition. 1999 : 246-252.
  • 6Amat J,Casals A,Frigola M.Stereoscopic system for human body tracking in natural scenes[C]//Proceedings of the IEEE International Workshop on Modelling People, Corfu,Greece,September 1999.

同被引文献86

引证文献11

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部