期刊文献+

基于粒子群优化算法和相关性分析的特征子集选择 被引量:22

Feature Subset Selection Based on Particle Swarm Optimization Algorithm and Relevance Analysis
下载PDF
导出
摘要 特征选择是模式识别与数据挖掘等领域的重要问题之一。针对此问题,提出了基于离散粒子群和相关性分析的特征子集选择算法,算法中采用过滤模式的特征选择方法,通过分析网络入侵数据中所有特征之间的相关性,利用离散粒子群算法在所有特征的空间里优化搜索,自动选择有效的特征子集以降低数据维度。1999KDD Cup Data中IDS数据集的实验结果表明了提出算法的有效性。 Feature selection is one of the important problems in the pattern recognition and data mining areas. The new feature subset selection method based on discrete binary version of particle swarm optimization (PSO) algorithm and relevance analysis is proposed. This new method employs the filter mode feature selection algorithm, which focuses on the correlation among the features of the network traffic data and employs the discrete particle swarm algorithm to find an optimized feature set. Experiments in 1999 KDD Cup Data confirm the effectiveness of the proposed strategy.
出处 《计算机科学》 CSCD 北大核心 2008年第2期144-146,共3页 Computer Science
基金 国家自然科学基金项目(60673161) 教育部科技重点项目(206073) 福建省自然科学基金项目(A0610012)
关键词 数据挖掘 入侵检测 粒子群优化 相关性 特征子集选择 Data mining, Intrusion detection, Particle swarm optimization, Relevance, Feature subset selection
  • 相关文献

参考文献10

  • 1Lee W. A Data Mining Framework for Constructing Features and Models for Intrusion Detection Systems [D]. New York, Columbia University, 1999.
  • 2乔立岩,彭喜元,彭宇.基于微粒群算法和支持向量机的特征子集选择方法[J].电子学报,2006,34(3):496-498. 被引量:25
  • 3陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 4Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of the IEEE Int. Conf. Neural Networks, 1995. 1942- 1948.
  • 5Eberhart R C, Kennedy J. A discrete binary version of the particle swarm algorithm. In; IEEE Conference on Systems, Man, and Cybernetics. Orlando, FL, IEEE Press, 1997. 4104-4109.
  • 6Liu H,Setiono R. Feature Selection with Selective Sampling. In: Proc. 19th Int'1 Conf. Machine Learnlng,2002. 395-402.
  • 7Ding C,Peng H C. Minimum Redundancy Feature Selection from Microarray Gene Expression Data. In: Proc. IEEE Computer Soc. Bioinformatics Conf. (CSB 03), IEEE CS Press, 2003. 523 -528.
  • 8董琳,邱泉,于晓峰,等(译).数据挖掘实用机器学习技术(第2版).北京:机械工业出版社,2006.190-195.
  • 91999 KDD Cup competition, http://kdd. ics. uci. edu/databases/ kddcup99/kddcup99. html, 2006. 3.
  • 10Shi Y H, Eberhart R C. A Modified Particle Swarm Optimizer. In: IEEE International Conference of Evolutionary Computation, Piscataway, NJ: IEEE, 1998. 69-73.

二级参考文献14

  • 1陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 2Wu X,A Heuristic Covering Algorithm for Extension Matrix Approach.Department of Artificial Intelligence,1992年
  • 3洪家荣,Proc Int Computer Science Conference’88, Hong Kong,1988年
  • 4洪家荣,Int Jnal of Computer and Information Science,1985年,14卷,6期,421页
  • 5M Dash,Liu H.Feature selection for classification[J].Intelligent Data Analysis,1997,(3):131-156.
  • 6R Kohavi,G H John.Wrappers for feature subset selection[J].Artificial Intelligence,97.1997(1 ~2):273 -324.
  • 7J Kennedy,R C Eberhart.Particle swarm optimization[A].Proc IEEE Conference on Neural Networks[C].Piscataway,NJ,1995 (4).1942-1948.
  • 8Y Shi,R C Eberhart.A modified particle swarm optimizer[A].Proceedings of the IEEE International Conference on Evolutionary Computation[C].Piscataway,NJ:IEEE Press,1998.69-73.
  • 9R C Eberhart,J Kennedy.A discrete binary version of the particle swarm algorithm[A].IEEE Conference on Systems,Man,and Cybernetics[C].Orlando,FL,IEEE Press,1997 (5).4104-4109.
  • 10Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2 (2):121-167.

共引文献118

同被引文献243

引证文献22

二级引证文献195

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部