期刊文献+

医疗废物中输液管(含PVC)与纱布(含纤维素)的混合热解动力学模型 被引量:1

Co-Pyrolysis Kinetic Model of Tube for Transfusion(PVC) and Gauze(Cellulose) in Medical Wastes
下载PDF
导出
摘要 为研究聚氯乙烯(polyvinyl chloride,PVC)类与生物质类医疗废物的混合热解特性,利用差热热重分析仪,在氮气气氛下,对输液管(tube for transfusion,TFT;含PVC)和纱布(含纤维素)样品进行了混合热解实验,并以其相互反应机制为依据,单组分热解模型为基础,建立了二者混合热解的动力学模型.结果表明:提出的输液管与纱布相互反应热解模型能很好地描述二者的热解行为,相对误差达1.03%;模型计算得到的动力学参数显示输液管脱除HCl的反应和纱布生成水和醛类物质的反应的活化能均明显降低,而其他反应的动力学参数仅出现轻微变化或无变化,验证了二者混合热解的相互催化机理和相互反应机制. To obtain co-pyrolysis characteristics of medical wastes containing polyvinyl chloride (PVC) and biomass, co-pyrolysis experiment on mixture of tube for transfusion (TFT) and gauze, the main ingredient of which was PVC and cellulose respectively, was carried out in an atmosphere of N2 using thennogravimetric analyser (TGA). In view of the co-pyrolysis behavior and mechanism, a co-pyrolysis kinetic model, which could reflect interaction principle between TFT and gauze, was established based on the pyrolysis model of single component. The calculated results and experimental data show satisfactory agreement with relative error of 1.03 %. Both the obtained kinetic parametes of activation energy for HCl evolution reaction from TFT and the aldehyde production reaction from the original cellulose evidently decreased, while the kinetic parameters for other reactions almost kept changeless. All results verify that the co-pyrolysis kinetic model can describe the interaction and catalysis mechanism for co-pyrolysis of TFT and gauze.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2008年第2期147-152,共6页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(50378062) 天津市科委重大攻关项目(013109611) 天津大学南开大学研究项目(TD200111)
关键词 医疗废物 输液管 聚氯乙烯 纱布 生物质 纤维素 混合热解 动力学模型 medical wastes tube for transfusion(TFT) polyvinyl chloride(PVC) gauze biomass cellulose co-pyrolysis kinetic model
  • 相关文献

参考文献14

  • 1Knumann R, Bockhom H. Investigation of the kinetics of pyrolysis of PVC by TG-MS-analysis [ J ]. Combustion Science and Technology, 1994,101 (1/2/3/4/5/6) : 285-299.
  • 2Kim S. Pyrolysis kinetics of waste PVC pipe [ J]. Waste Management, 2001,21(7): 609-616.
  • 3Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass [ J ]. Energy Conversion and Management, 2000,41 (6) : 633-646.
  • 4Worasuwannarak N, Sonobe T, Tanthapanichakoon W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78 (2) :265-271.
  • 5Li S, Lyons-Hart J, Banyasz J L, et al. Real-time evolved gas analysis by FTIR method: An experimental study of cellulose pyrolysis[J]. Fuel, 2001,80(12) : 1809-1817.
  • 6Banyasz J L, Li S, Lyons-Hart J, et al. Gas evolution and the mechanism of cellulose pyrolysis [ J ]. Fuel, 2001, 80 ( 12 ) : 1757-1763.
  • 7Sφnun L, Grφnli M G, Hustad J E. Pyrolysis characteristics and kinetics of municipal sohd wastes[J]. Fuel, 2001,80 (9): 1217-1227.
  • 8Matsuzawa Y, Ayabe M, Nishino J. Acceleration of cellulose copyrolysis with polymer[J]. Polymer Degradation and Stability, 2001,71(3) :435-444.
  • 9Zevenhoven R, Axelsen E P, Hupa M. Pyrolysis of waste-derived fuel mixtures containing PVC[J]. Fuel, 2002, 81 (4) : 507-510.
  • 10Garcia A N, Marcilla A, Font R. Thermogravimetric kinetic study of the pyrolysis of municipal solid waste[J]. Thermochimica Acta, 1995,254: 277-304.

二级参考文献25

  • 1邓娜,张于峰,牛宝联,孙越霞,陈静.医疗废物典型组分的热重分析及新的动力学模型[J].环境科学学报,2005,25(11):1484-1490. 被引量:12
  • 2García A N, Marcilla A, Font R. 1995. Thermogravimetric kinetic study of the pyrolysis of municipal solid waste [ J ]. Thermochimica Acta, 254:277-304.
  • 3Kim S W, Cho Y S, Shim M J. 1998. Thermal degradation kinetics of PE by the Kissinger equation [ J ]. Materials Chemistry and Physics, 52 ( 1 ):94-97.
  • 4Lee B K, Ellenbeckerb M J, Rafael M E. 2004. Alternatives for treatment and disposal cost reduction of regulated medical wastes [ J ]. Waste Management, 24(2): 143-151.
  • 5Lee C C, 1996. Huffman G L. Medical waste management/incineration:review[J]. Journal of Hazardous Materials, 48(1-3) : 1-30.
  • 6Li Sh Y, Yue Ch T. 2004. Study of different kinetic models for oil shale pyrolysis[J]. Fuel Processing Technology, 85(1): 51-61.
  • 7Marcilla A, Beltran M. 1995. Thermogravimetric kinetic study of poly(vinyl chloride) pyrolysis[J]. Polymer Degration and Stability, 48(2):219-229.
  • 8Mato R R A M, Kassenga G R. 1997. A study on problems of management of medical solid wastes in Dar es Salaam and their remedial measures [J]. Resourse, Conservation and Recycling, 21( 1 ): 1-16.
  • 9Ran J Y. 2003. Numerical Simulation and Experiment on the Gas Solid Flow and Combustion character in Circulating Fluidized Bed Combustion for Solid Medical Waste[ D]. Chongging Chongqing University :40-45( in Chinese).
  • 10Rao T R, Sharma A. 1998. Pyrolysis rates of biomass materials[J]. Energy,23 ( 11 ): 973-978.

共引文献27

同被引文献20

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部