期刊文献+

基于离散超小波变换的光码正交码 被引量:2

Optical orthogonal code based on discrete hyper-wavelet transform
下载PDF
导出
摘要 在光码分多址系统中,提高系统容量需要增大光正交码的长度,从而压缩光脉冲,而超短光脉冲的产生不易实现。针对这一问题,提出了一种研究光正交码的新方法,采用离散超小波变换对光正交码进行变换,经变换之后得到的新光正交码集仍具有良好的自相关性与互相关性。由此,对光正交码的研究与构造可转化为对新正交码的研究与构造。且采用该方法构造的光正交码在光码分多址系统中能有效地提高系统容量。 In optical code division multiple access system, the length of optical orthogonal code (OOC) should be increased in order to improve system capacity and thus to compress optical pulses. However, the hyper-wavelet pulse is not easily produced. To solve this problem, a new method for studying optical orthogonal code is established. Using the discrete hyper-wavelet transformation, the OOC can be transformed into a new code set, which also has a well property of self-dependence and interdependence. Hence, the investigation and construction of OOC is equivalent to that of the new orthogonal code set, and the OOC established by this method can effectively improve system capacity for optical code division multiple access system.
作者 吴寿章 刘平
出处 《重庆邮电大学学报(自然科学版)》 2008年第1期83-85,93,共4页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
关键词 2-循环矩阵 光正交码 离散超小波变换 2-circular matrix optical orthogonal code (OOC) discrete hyper-wavelet transform
  • 相关文献

参考文献10

  • 1[1]SALEHI J A.Code division multiple-acccss techniques in optical fiber networks-part I:fundamental principles[J].IEEE Trans on Commun,1989,37(8):824-833.
  • 2[2]KAMAKURA K,SASASEI.A new modulation scheme using asymmetric erorr-correcting codes embedded in optical orthogonal codes for optical CDMA[J].1EEE J Lightwave Tech,2001,19(12):1839-1850.
  • 3[3]HUANG W,NIZAM M H M,ANDONOVIC I,et a1.Coherent optical CDMA (OCDMA)systems used for high-capacity optical fiber networks-system description.OTDMA comparison and OCDMA/WDMA networking[J].IEEE J Lightwave Tech,2000,18(6):765-778.
  • 4[4]CHUNG F R K,ALEHI J A S,WEI V K.Optical orthogonal codes:design,analysis and applications[J].IEEE Trans on Inform Theory,1989,37(5):595-604.
  • 5[5]WANG G Q.Matrx methods of constructing wavelet filters and discrete hyper-wavelet transforms[J].Optical Engineering,2000,39,1080-1087.
  • 6[6]DAI Dao-qing.Wavelets and orthogonal polynomial based on harmonic engenstates[J].Journal of Math Phys,2000,41(5):3086-3103.
  • 7[7]DAUBECHIES I.Ten lectures on wavelets[M].Philadelphia:SIAM Pulb,1992.
  • 8[8]COHEN A,DAUBECHIES I,VIAL P.Wavelets on the interval and fast wavelet transforms[J].Appl Comp Harmonic Analysis,1993,(1):54-81.
  • 9[9]Mallat S G.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans 0n Pattern Ana1ysis and machine Intelligence,1989,11(7):674-693.
  • 10[10]DAUBECHIES I.The wavelet transform.time-frequency localization and signal analysis[J].IEEE Trans on Information Theory,1990,36(5):96l-1005.

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部