期刊文献+

q-微分算子恒等式的应用

q-Differential operator identity and its applications
下载PDF
导出
摘要 改进了Rogers算子并应用新算子给出了Sears变换公式的新证明.另外,还给出了Askey-Roy积分公式的几个推广形式. This paper generalized the q-exponential operator defined by Rogers. Then used the new operator to give a proof of Sears non-terminating q-series transformation formula. In addition, several extensions of Askey-Roy integral formula were given.
作者 房剑平
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期20-24,共5页 Journal of East China Normal University(Natural Science)
基金 教育部高等学校博士学科点专项科研基金(20060269011)
关键词 q-微分算子 基本超几何级数 sears变换 q-differential operator basic hypergeometric series Sears' transformation formula
  • 相关文献

参考文献12

  • 1ROGERS L J. On the expansion of some infinte produets[J]. Proc London Math Soc, 1893, 24: 337-352.
  • 2CHEN Y C W,LIU Z G. Parameter augmentation for basic hypergeometric series,II[J]. J Combin Theory Ser A, 1997,80:175-195.
  • 3刘治国.Nassrallah-Rahman积分的一个新证明[J].数学学报(中文版),1998,41(2):405-410. 被引量:1
  • 4LIU Z G. Some operator identities and q-Series transformation formulas [J]. Discrete Math, 2003, 265:119-139.
  • 5BOWMAN D. q-Differential Operators, Orthogonal Polynomials,and Symmetric Expansions[M]. [S. l. ]: Mem Amer Math Soc, 2002 : 159.
  • 6FANG J P. q-Differential operator identities and applications[J]. J Math Anal Appl, 2007, 332: 1393-1407.
  • 7AL-SALAM W,CARLITZ L. Some q-orthogonal polynomials[J]. Math Nach, 1965, 30 : 47-61.
  • 8ANDREWS G E. On the Foundations of Combinatorial Theory Ⅴ: Eulerian Differential Operators[G]//Studies In Appl Math, 1971,50: 345-375.
  • 9ANDREWS G E. Ramanujan's "lost" notebook I. Partial θ-functions[J]. Adv in Math, 1981, 41: 137-172.
  • 10GASPER G, RAHMAN M. Basic Hypergeometric Series[M]. Cambridge:Cambridge University Press, 1990.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部