期刊文献+

一种基于CI特征的3-域均值平移聚类肺结节分割算法(英文) 被引量:1

Pulmonary nodule segmentation algorithm based on three-domain mean shift clustering
下载PDF
导出
摘要 提出了一种有效的分割CT图像中肺结节的新算法.该算法采用均值平移(mean shift)算法和基于CI(Convergence Index,CI)特征,共由三个步骤组成:(1)计算感兴趣区内的所有像素的CI特征;(2)把CI特征与像素的灰度值和空间位置信息结合在一起,形成3-域特征向量集;(3)利用均值平移聚类算法对特征向量集进行聚类.由于该算法能有效分析多高斯模型描述的包括实质性结节和亚实质性结节在内的所有结节,因此.可应用于CT图像中任何含有结节的用户感兴趣区域.实验结果证明,该方法能更精确地分割出不同类型的结节. A novel and more effective algorithm used for segmenting pulmonary nodules in CT images was presented. The algorithm is based on mean shift clustering method and CI (Convergence Index) features, which can represent the multiple Gaussian model of pulmonary nodules both for solid and sub-solid, substantially. The algorithm has three steps: (1) calculating the CI feature of every pixel in the region of interest (ROD ; (2) combining the CI feature with the intensity range and the spatial position of each pixel to form a feature vector set; (3) grouping all feature vector sets into different cluster with mean shift clustering algorithm. Owing to our algorithm can represents the multiple Gaussian model both for solid and sub-solid nodules, it can be used in any interesting nodule regions, especially suitable for the segmentation of sub-solid nodules. Experiments demonstrated that our algorithm can figure out the outline of pulmonary nodules of different forms more precisely.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期60-67,共8页 Journal of East China Normal University(Natural Science)
基金 上海市教委重点项目(06ZZ33) 上海市重点学科资助项目(P0502) 上海高校选拔培养优秀青年教师科研专项基金(358536)
关键词 CT图像 结节分割 实质性结节 亚实质性结节 CI特征 均值平移算法 CT images nodule segmentation solid nodule sub-solid nodule CI feature mean shift algorithm
  • 相关文献

参考文献9

  • 1聂生东,郑斌,李雯.CT图像肺结节计算机辅助检测与分类系统设计(英文)[J].系统仿真学报,2007,19(5):935-944. 被引量:14
  • 2HENSCHKE C I, YANKELEVITZ D F, MIRTCHEVA R, et al. CT screening for lung cancer: frequency and significance of part-solid and non-solid nodules[J]. A JR, 2002,178 : 1053-1056.
  • 3MUSHINE J L,SULLIVAN D C, Lung cancer screening[J]. The New England Journal of Medicine, 2005, 352:2714- 2720.
  • 4MATSUMOTO S,KUNDEL H L. Pulmonary nodule detection In CT images with quantized convergence index filter[J].Medical Image Analysis, 2006, 10:343-352.
  • 5SLUIMER I C,WAES P F V. Computer-aided diagnosis in high resolution CT of the lungs[J]. Medical Physics, 2003,30: 3081-3090.
  • 6SETHIAN J-A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry,Fluid Mechanics,Computer vision,and Materials Seience[M]. Cambridge:Cambridge University Press, 1999.
  • 7COMANICIU D, MEER P. Mean shift: A robust approach toward feature space analysis[J] IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24: 1-18.
  • 8KOBATAKE H, HASHIMOTO S. Convergence index filter for vector fields[J]. IEEE Transactions on Image Processing, 1999(8):1029-1038.
  • 9LEE Y, HARA T, FUJITA H, et al. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique[J]. IEEE Transactions on medical imaging, 2001, 20:595-604.

二级参考文献50

  • 1Zhao B, Yankelevitz D, Reeves A, Henschke C. Two-dimensional multi-criterion segmentation of pulmonary nodules on helical CT images [J]. Med Phys (S0094-2405), 1999, 26(8): 889-895.
  • 2Zhao B, Gamsu G, Ginsberg M, et al. Automatic detection of small lung nodules on CT utilizing a local density maximum algorithm [J]. Journal of Applied Clinical Medical Physics (S1526-9914), 20034(3): 248-260.
  • 3Gurcan MN, Sahiner B, Petrick N, et al. Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system [J]. Med Phys. (S0094-2405), 2002,29(11): 2552-8.
  • 4McNitt-Gray MF, Hart EM. A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT:preliminary results [J]. Med Phys (S0094-2405), 1999, 26(6): 880-888.
  • 5Ko JP, Rusinek H, Jacobs EL, et al. Small pulmonary nodules:volume measurement at chest CT-phantom study [J]. Radiology.(S1527-1315), 2003, 228(3): 864-870.
  • 6Rubin GD, Lyo JK, Paik DS, et al. Pulmonary nodules on multi-detector row CT scans:performance comparison of radiologists and computer-aided detection [J]. Radiology (S1527-1315), 2005,234(1): 274-283.
  • 7Zheng B, Ganott MA, Britton CA, et al. Soft-copy mammographic readings with different computer-assisted detection cueing environments:preliminary findings [J]. Radiology (S 1527-1315), 2001, 221(3): 633-640.
  • 8Coxson HO, Hogg JC, Mayo JR, et al. Quantification of idiopathic pulmonary fibrosis using computed tomography and histology [J].Am J Respir Crit Care Med (S 1009-3079), 1997, 155(5): 1649-1656.
  • 9Brown MS, McNitt-Gray MF, Mankovich NJ, et al. Method for segmentation chest CT image data using an anatomical model:Preliminary results [J]. IEEE Trans Med Imaging (S0278-0062), 1997,16(6): 828-839.
  • 10Feig S, D'Orsi C, Hendrick R, et al. American Cancer Society guidelines for breast cancer screening [J]. Am J Roentgenol(S1546-3141), 1998, 171(1): 29-33.

共引文献13

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部