期刊文献+

基于QKD量子密钥扩展的方法研究 被引量:4

Research on extending quantum key approach based on QKD
下载PDF
导出
摘要 目前量子密钥分发所面临的最主要问题是如何实现远距离、高码率量子密钥传输。为提高量子保密通信系统量子密钥生成的速率,提出一种反射和位移相结合的技术对已有的码率较低的量子密钥进行扩展处理,提高量子密钥库的容量。实验结果表明,采用反射技术和位移技术不但能有效地扩展量子密钥随机序列,同时可以保持良好的随机性,是一种扩展量子密钥库的有效方法。 At present the most important problem of quantum key distribution is how to realize the key for long-distance and high code rate. So in order to improve the quantum key rates of quantum security communication systems, the reflection technique and displacement technique are studied to extend the capacity of quantum key warehouse. The experiment simulation shows that the reflection technique and displacement technique can extend random sequence and their random quality is invariable
出处 《量子电子学报》 CAS CSCD 北大核心 2008年第1期65-70,共6页 Chinese Journal of Quantum Electronics
基金 四川省科技厅科技计划项目资助(2007H12-010) 四川省软件重点实验室课题资助(SCSL 06006)
关键词 量子光学 量子密钥分配 密钥扩展 反射 位移 quantum optics quantum key distribution key extending reflection displacement
  • 相关文献

参考文献18

  • 1Wiesner S. Conjugate coding [J]. Sigact News, 1983, 15(1): 78-88.
  • 2Wooters W K, Zurek W H. A single quantum cannot be cloned [J]. Nature, 1982, 299: 802-803.
  • 3Lutkenhaus N. Security against eavesdropping in quantum cryptography [J]. Phys. Rev. A, 1996, 54: 972111.
  • 4Lutkenhaus N. Estimates for practical quantum cryp tography [J]. Phys. Rev. A, 1999, 59: 330123319.
  • 5Brassard G, Lutkenhaus N, Mor T, et al. Security aspects of practical quantum cryptography [DB/OL]. http://arxiv. org/dfdquant-ph/9911054, 1999211.
  • 6Hankerson D, Menezes A, Vanstone S. Guide to Elliptic Curve Cryptography [M]. Heidelberg: Springer, 2004. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography [DK]. Eprint quant-ph/0101098.
  • 7Bennett C H, Brassard G. Quantum cryptography:public key distribution and cointossing [C]. Proc. IEEE Int. Conf. Computers, Systems and Signal Processing (Bangalore. India), 1984, 175-179.
  • 8Bennett C H. Quantum cryptography using any two non-orthogonal states [J]. Phys. Rev. Left., 1992, 68: 3121-3124.
  • 9Bruss D. Optimal eavesdropping in quantum cryptography with six states [J]. Phys. Rev. Left., 1998, 32(14): 3018-3021.
  • 10Ekert A. Quantum cryptography based on Bell'S theorem [J]. Phys. Rev. Lett., 1991, 67: 661-663.

二级参考文献2

共引文献20

同被引文献17

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部