期刊文献+

一种基于小波子带熵的遥感图像压缩算法(英文) 被引量:2

Remote Sensing Image Compression Algorithm Based on Wavelet Sub-bands Entropy
下载PDF
导出
摘要 提出了一种使用小波子带熵进行比特分配的遥感图像压缩算法。对遥感图像进行小波提升分解后,分析了各高频子带能量百分比及其熵的变化趋势,在此基础上提出了一种新的快速比特分配方法-使用子带熵进行比特分配。然后对各个高频子带进行均匀量化,量化后的数据采用比特平面编码。对最高比特平面只记录该比特平面中非零系数的坐标,其它比特平面采用行程编码和Huffman编码方法进行压缩。实验结果表明,纹理复杂以及相对平坦的遥感图像使用该算法压缩后都可以获得很好的重构图像质量,峰值信噪比均大于34dB,而压缩比则与图像的复杂程度有关。 A high-performance lossy compression algorithm was proposed for remote sensing image compression based on bit allocation using sub-bands entropy. After decomposing the remote sensing image by using wavelet lifting scheme, the distribution of energy percentage and entropy of high frequency sub-bands were analyzed. A novel bit allocation method using the entropy was proposed. Uniform scalar quantification was implemented for each high frequency sub-band. Bit plane encoding followed and included two parts. The coordinates of non-zero coefficients were registered in the most significant bit plane, and run-length encoding and Huffman encoding were adopted for other bit planes. Experimental results show that the compression scheme performs well on a set of test remote sensing images including complicated texture images and relative planar ones. The Peak Signal to Noise Ratio (PSNR) is all higher than 34dB. However, the Compression Ratio (CR) depends on image's complicated degree.
出处 《光电工程》 EI CAS CSCD 北大核心 2008年第2期61-65,133,共6页 Opto-Electronic Engineering
基金 国家863计划项目
关键词 遥感图像 小波压缩 比特分配 remote sensing image wavelet compression bit allocation entropy
  • 相关文献

参考文献3

二级参考文献15

  • 1马国锐,武文波,秦前清.遥感影像压缩质量评价方法[J].遥感信息,2004,26(3):48-52. 被引量:9
  • 2Hsiang S T, Woods J W. Embedded image coding using zeroblocks of subband/wavelet coefficients and context modeling [ A ]. In:Proceedings of MPEG-4 Workshop and Exhibition at ISCAS [ C ] ,Geneva, Switerland, 2000: 1153 ~ 1164.
  • 3Servetto S. Wavelet based image coding via morphological prediction of significance [ A ]. In: Proceedings of IEEE International Conference on Image Processing[ C] , Washington, DC, USA, 1995:530 ~ 533.
  • 4Zhong J M, Leung C H. Image compression based on energy clustering and zero-quadtree representation [ J ]. IEEE Proceedings of Vision, Image and Signal Processing, 2000,147 (6): 564 ~ 570.
  • 5Lazzaroni Fabio, Leonardi Riccardo. High-performance embedded morphological wavelet coding [ J ]. IEEE Signal Processing letters,2003,10(10): 293 ~ 295.
  • 6Shapiro J. Embedded image coding using zero-trees of wavelet coefficients [ J ]. IEEE Transactions on Signal Processing, 1993,41 ( 11 ) :3445 ~ 3462.
  • 7Servetto S D. Image coding based on a morphological representation of wavelet data [ J]. IEEE Transactions on Image Processing, 1999,8(5): 1161 ~1174.
  • 8Witten I, Neal R, Cleary J. Arithmetic coding for data compression [J]. Communications of ACM, 1987,30 (6): 520 ~ 540.
  • 9Li Feipeng, Ma Guorui, Qin Qianqing, et al. Prior important band hyper-spectral image compression [ A ]. In: SPIE Proceedings,Multispectral Image Processing and Pattern Recognition [ C ], Beijing,China, 2003, 5286 ( 2 ): 709 ~ 712.
  • 10CHRYSAFIS C,ORTEGA A.Line based,reduced memory,wavelet image compression[J].IEEE Transactions on Image Processing,2000,9 (3):378-389.

共引文献16

同被引文献33

  • 1田宝凤,徐抒岩,孙荣春,王昕,闫得杰.一种适合星上应用的遥感图像有损压缩算法[J].光学精密工程,2006,14(4):725-730. 被引量:16
  • 2ATWOOD G, FAZIO A, MILLS D, et al. Inte StrataFlashTM memory technology overview[J].Intel Technology Journal ,1997,1(2) :1- 8.
  • 3TSUR O. Rugged, reliable, and secured data storage solutions for airborne ISR[J]. SPIE, 2004, 5409:66 -73.
  • 4TSUR O. Enabling data security with COTS solid- state flash disks[C]. Non-Volatile Memory Technology Symposium, 2004 : 131-134.
  • 5WETT T, LEVY S. Flash-the memory technology of the future that's here today[C]. Proceedings of the IEEE 1995 National Aerospace and Electronics Conference, 1995:359-364.
  • 6BEZ R, CAMBERLENGHI E, MODELLI A, et al. Introduction to flash memory[C]. Proceedings of the IEEE,2003,91(4) :489 -502.
  • 7FISHELL W G. Solid state memory in recce system[C]. SPIE, 1995,2555 : 183-194.
  • 8VIHMALD J P,LIPPONEN V. Memory technology in mobile devices status and trends[J].Solid-State Electronics, 2005,49 ( 11 ) : 1714-1721.
  • 9Samsung Electronics. 1G × 8 Bit / 2G × 8 Bit / 4G × 8 Bit NAND Flash Memory (Revision1.1)[R]. 2006.
  • 10KANG J U,KIM J S, PARK C,et al. A multichannel architecture for high-performance NAND flash-based storage system [J]. Journal of Sys terns Architecture,2007,53(9) :644-658.

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部