期刊文献+

基于形状保持主动轮廓的椭圆状目标检测(英文) 被引量:7

Elliptic Object Detection Based on Shape Preserving and Active Contour
下载PDF
导出
摘要 本文通过形状约束方程(组)与一般主动轮廓模型结合,将目标形状与主动轮廓模型融合到统一能量泛函模型中,提出了一种形状保持主动轮廓模型即曲线在演化过程中保持为某一类特定形状。模型通过参数化水平集函数的零水平集控制演化曲线形状,不仅达到了分割即目标的目的,而且能够给出特定目标的定量描述。根据形状保持主动轮廓模型,建立了一个用于椭圆状目标检测的统一能量泛函模型,导出了相应的Euler-Lagrange常微分方程并用水平集方法实现了椭圆状目标检测。此模型可以应用于眼底乳头分割,虹膜检测及相机标定。实验结果表明,此模型不仅能够准确的检测出给定图像中的椭圆状目标,而且有很强的抗噪、抗变形及遮挡性能。 We integrate the detected object shape represented by shape restraint equation(s) and general active contour models into a unified energy function to generate the shape preserving active contour model, which keeps the curve to be a specific class shape in the evolvement. In this model, a specific class contour shape is represented as the zero level line of some certain parametric level set function(s). So, this model can not only detect the given object correctly but also characterize the object shape quantificationally via these parameters. In addition, we build an energy functional for elliptic objects detection using the proposed model, deduce the corresponding Euler-Lagrange ordinary differential equation (ODE(s)) of its shape parameters and implement them using level sets method. The elliptic object detection model has many applications such as papilla segmentation, iris detection and camera calibration. By numerical experiments presented in the paper, it can not only detect the elliptic objects correctly but also is robust to noise, deformity and occlusion etc.
出处 《光电工程》 EI CAS CSCD 北大核心 2008年第2期97-102,共6页 Opto-Electronic Engineering
基金 中国科学院创新基金(CX01-04-02)
关键词 形状保持 椭圆状目标 主动轮廓 Chan—Vese模型 水平集 shape preserving elliptic object active contour Chan-Vese model level set
  • 相关文献

参考文献11

  • 1Osher S, Sethian J A. Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
  • 2Mumford D, Shah J. Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problem [J]. Commun. Pure Appl. Math, 1989, 42(5): 577-685.
  • 3Chen Y, Tagare H D, Thiruvenkadam S, et al. Using prior shapes in geometric active contours in a variational framework[J]. International Journal of Computer Vision, 2002, 50(3): 315-328.
  • 4Cremers D, Tischhauser F, Weickert J, et al. Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional [J]. International Journal of Computer Vision, 2002, 50(3): 295-313.
  • 5Cremers D, Sochen N, Schnorr C. Towards Recognition-based Variational Segmentation Using Shape Priors and Dynamic Labeling [C]//Intl. Conf. on Scale-Space Theories in Computer Vision. Isle of Skye: Springer, 2003, 2695: 388-400.
  • 6Chan T, Zhu W. Level Set Based Shape Prior Segmentation[EB/OL]. http://www.math.ucla.edu/applied/index.shtml, 2003.
  • 7Cremers D, Sochen N, Schnoerr C. A Multiphase Dynamic Labeling Model for Variational Recognition-driven Image Segmentation [J]. International Journal of Computer Vision, 2006, 66(1): 67-81.
  • 8Vese L A, Chan T F. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model [J]. International Journal of Computer Vision, 2002, 50(3): 271-293.
  • 9TANG Yan-dong, LI Xiao-mao, Axel von Freyberg, et al. Automatic Segmentation of the Papilla in a Fundus Image Based on the C-V Model and a Shape Restraint [C]// Pattern Recognition, 2006. ICPR 2006. 18th International Conference on [C]. HongKong: IEEE, 2006, 1: 183-186.
  • 10Chan T, Vese LA. Active Contours Without Edges [J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.

同被引文献50

  • 1李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 2罗红根,朱利民,丁汉.基于主动轮廓模型和水平集方法的图像分割技术[J].中国图象图形学报,2006,11(3):301-309. 被引量:34
  • 3Kass M, Witkin A, Terzopoulos D. Snake: Active Contour Models [J]. International Journal of Computer Vision (S0920-5691), 1987, 8: 321-331.
  • 4Xu C, Prince P L. Snakes Shapes and Gradient Vector Flow [J]. IEEE Trans. on Image Processing(S 1057-7149), 1998, 7: 359-369.
  • 5Cohen L D. On Active Contour Models and Balloons [J]. CVGIP(S 1049-9660), 1991, 53(2): 211-218.
  • 6Terzopoulos D. Matching Deformable Models to Images Technical Digest Series [C]// Topical Meeting in Machine Vision, Incline Village, Nevada, 1987, 12: 160-163.
  • 7Amini a, Tehrani S, Whemouth T. Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints [C]// Second International Conference on Computer Vision, Dec 5-8, 1988: 95-99.
  • 8Osher S, Rudin I J. Feature-oriented Image Enhancement Using Shock Filters [J]. SlAM .J Num Analysis(S1095-7170), 1990, 27: 919-940.
  • 9林家民.以视觉伺服为基础之物体追踪系统之设计与实现:[学位论文].台湾:国立成功大学,2006.
  • 10CANNY J. A computational approach to edge detection. IEEE Transac- tion on Pattern Analysis and Machine Intelligence. 1986,8 (6) :679 - 698.

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部