期刊文献+

率相关晶体塑性在有限元应用中的关键技术 被引量:1

Key problems for rate-dependent crystal plasticity applied in finite element simulation
下载PDF
导出
摘要 率相关晶体塑性在有限元应用中存在数值求解稳定性、精度和效率不能兼顾的问题,这是由于其数值化过程中的诸多关键技术相互的制约所致。文章讨论了这些关键技术,指出了建模采用的变形构形和控制方程的主未知量对求解计算的影响,研究了本构计算的隐式和显式算法及数值技巧,并分析了有限元计算过程对本构求解的影响。基于对这些关键技术的研究及对其处理方法的探讨,简要给出了率相关晶体塑性隐式和显式模型及求解算法示例。圆棒料镦粗和杯形件拉深过程模拟研究表明,这些模型和算法能够较好地兼顾计算的稳定性、精度和效率,而且其结果也表明,文章对这些关键技术问题的处理是合理可行的。 Some problems for applying rate-dependent crystal plasticity into finite-element (FE) simulation are that computational stability, accuracy and efficiency can not be considered simultaneously in the constitutive equation's solution. This is constrained by several key problems lying in the numeralization of the model. These key problems are discussed in the paper. The influence of deformation configurations and main unknowns in controlling equation adopted in the model are pointed out. Implicit and explicit algorithm as well as some numerical techniques for the solution of constitutive equation are investigated. Additionally, the influence of the calculations of finite element method (FEM) on the solution of constitutive equation is analysis. Based on these studies and discusses, an implicit and an explicit crystal plasticity models as well as corresponding algorithms are given briefly for the examples. Round bar upset and cup drawing process are simulated based on given models, which indicates that computational stability, accuracy and efficiency are achieved simultaneously. These results prove that the handling approaches on these key problems in the paper is suitable and feasible.
出处 《塑性工程学报》 EI CAS CSCD 北大核心 2008年第1期7-13,共7页 Journal of Plasticity Engineering
基金 国家自然科学基金重点资助项目(50335060) 塑性成形模拟及模具技术国家重点实验室基金资助项目(06-2) 教育部归国学者科研基金资助项目
关键词 晶体塑性 率相关 有限元 数值算法 中间构形 控制方程 crystal plasticity rate dependent FEM numerical algorithm intermediate configuration controlling equation
  • 相关文献

参考文献2

二级参考文献18

  • 1HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. J Mech Phys Solids, 1972, 20(6): 401-413.
  • 2PIERCE D, ASARO R J, NEEDLEEMAN A. Material ratedependence and localized deformation in crystalline solids [J]. ActaMetall, 1983, 31(12): 1951-1976.
  • 3KALIDINDI S R, BRONKHORST C A, ANAND L.Crystallographic texture evolution in bulk deformation process of fccmetals [J]. J Mech Phys Solids, 1992, 40(3): 537-569.
  • 4SARMA G, ZACHARIA T. Integration algorithm for modeling theelasto-viscoplastic response of polycrystalline materials [J]. J MechPhys Solids, 1999, 47(6): 1219-1238.
  • 5RASHID M M, NEMAT-NASSER S. A constitutive algorithm forrate- dependent crystal plasticity [J]. Computer Methods in AppliedMechanics and Engineering, 1992, 94(2): 201- 228.
  • 6RAPHANEL J L, RAVICHANDRAN G, LEROY Y M. Three-dimensional rate-dependent crystal plasticity based on Runge-Kuttaalgorithms for update and consistent linearization [J]. InternationalJournal of Solids and Structures, 2004, 41(22-23): 5995-6021.
  • 7PEIRCE D, SHIH C F, NEEDLEMAN A. A tangent modulusmethod for rate dependent solids [J]. Computers and Structures, 1984,18(5): 875-887.
  • 8NEMAT-NASSER S, OKINAKA T. A new computational approachto crystal plasticity: fcc single crystal [J]. Mechanics of Materials,1996, 24(1): 43-57.
  • 9NEMAT-NASSER S, NI L, OKINAKA T. A constitutive model forfcc crystals with application to polycrystalline OFHC copper [J].Mechanics of Materials, 1998, 30:325-341.
  • 10MCGINTY R D, MCDowELL D L. A semi-implicit integration forrate independent finite crystal plasticity [J]. lnt J Plasticity, 2006,22(6): 996-1025.

共引文献8

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部