期刊文献+

统计先验指导的非下采样Contourlet变换域SAR图像降斑 被引量:5

SAR image despeckling using statistical priors in nonsubsampled contourlet transform domain
下载PDF
导出
摘要 提出了一种合成孔径雷达(SAR)图像降斑方案.首先利用Gamma分布和指数分布给出了NSCT域信号系数和噪声系数分布的有效逼近形式,使缩减因子对NSCT域图像子带的冗余特性具有自适应性.然后,利用方向邻域模型给出了缩减因子先验比的计算表达式,使缩减因子对NSCT域图像子带的方向特性具有自适应性,从而提高了NSCT系数缩减的有效性.实测SAR图像的降斑结果表明该降斑方案在减少斑点噪声的同时很好地保持了图像的细节特征.与多种降斑方法相比,该方案具有更好的边缘保持和后向散射系数保持性能. A new despeckling scheme for synthetic aperture radar (SAR) images is proposed based on the adaptive shrinkage principle in the nonsubsampled contourlet transform (NSCT) domain, First, the statistical distributions of signal and speckle noise coefficient magnitudes in the NSCT-domain image subbands are effectively approximated by Gamma distributions and exponential distributions, respectively, which can make the shrinkage factor well adapt to the high redundancy of NSCT image subbands. A new set of directional neighborhood models is then proposed to,calculate the prior ratio, making the shrinkage factor well adapt to the flexible directionality of NSCT-domain image subbands, thus enhancing the coefficient shrinkage performance. The experimental results on a real SAR image demonstrate that the proposed despeckling scheme can preserve the details while speckle noise is reduced. Compared with several classical despeckling methods, the new scheme has better edge preservation performance and backscattering coefficient preservation performance.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第1期14-21,共8页 Journal of Xidian University
基金 国家自然科学基金资助(60133010 60472084) 国家"973"重点基础研究发展计划项目基金资助(2001CB309403)
关键词 合成孔径雷达图像 降斑 非下采样CONTOURLET变换 自适应缩减 方向性邻域系统 SAR image despeckling nonsubsampled contourlet transform adaptive shrinkage directional neighborhood system
  • 相关文献

参考文献16

  • 1Shi Z, Fung K B. A Comparison of Digital Speckle Filters [C]//Proc IGARSS. New York: IEEE, 1994:2 129-2 133.
  • 2Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images [M]. Boston: Artech House, 1998.
  • 3Foucher S, Benie G B, Boucher JM. Multiscale MAP filtering of SAR images [J]. IEEE Trans on Image Process. , 2001, 10(1): 49-60.
  • 4Argenti F, Alparone L. Speckle Removal from SAR Images in the Undecimated Wavelet Domain [J]. IEEE Trans on Geosci Remote Sensing, 2002, 40(11) : 2 363-2 374.
  • 5Dai M, Peng C, Chan A K, et al. Bayesian Wavelet Shrinkage with Edge Detection for SAR Image Despeckling [J].IEEE Trans on Geosci Remote Sensing, 2004, 42(8) : 1 642-1 648.
  • 6Pizurica A, Philips W, Lemahieu I, et al. Despeckling SAR Images Using Wavelets and a New Class of Adaptive Shrinkage Estimators [C]//Proc'ICIP: Vol. 1. New York= IEEE, 2001=233-236.
  • 7Xie H, Pierce L E, Ulaby F T. SAR Speckle Reduction Using Wavelet Denoising and Markov Random Field Modeling [J]. IEEE Trans on Geosci and Remote Sensing, 2002, 40(10) : 2 196-2 212.
  • 8盛国芳,冷朝霞,焦李成.数据融合在SAR图像去噪中的应用[J].西安电子科技大学学报,2004,31(1):91-95. 被引量:5
  • 9Do M N, Vetterli M. The Contourlet Transform: an Efficient Directional Multiresolution Image Representation [J]. IEEE Trans on Image Processing, 2005, 14(12) : 2091-2 106.
  • 10Ni W, Guo B L, Liu Y. Speckle Reduction Algorithm for SAR Images Using Contourlet Transform [J]. Journal of Information & Computational Science, 2006, 3(1): 83-94.

二级参考文献78

  • 1侯彪,刘芳,焦李成.基于小波变换的高分辨SAR港口目标自动分割[J].红外与毫米波学报,2002,21(5):385-389. 被引量:16
  • 2焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 3Kuan D T, Sawchuk A A. Adaptive Noise Smoothing Filter for Signal-dependent Noise[J]. IEEE Trans on PAMI, 1985, 7(2) : 165-177.
  • 4Frost V S, Stiles J A. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise[J]. IEEE Trans on PAMI, 1982, 4(2) : 157-165.
  • 5Lee J S. A Simple Speckle Smoothing Algorithm for Synthetic Aperture Radar Images [J]. IEEE Trans on System, Man, and Cybernatics, 1983, 13(1): 85-89.
  • 6Lee J S. Refined Filtering of Image Noise Using Local Statistics[J]. Comp Graph Image Proc, 1981, 15(3) : 380-389.
  • 7Lopes A, Nezry E, Touzl B. Maximum a Posteriori Speckle Filtering and First Order Texture Model in SAR Images[A]. Proceeding dthe IGASS'90[C]. Maryland: University of Maryland, 1990. 2409-2412.
  • 8Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images[M]. New York: Artech House, 1998.
  • 9Oliver C J. A Model for Non-rayleigh Scattering Statistics[J]. Opt Acta, 1984, 31(2): 701-722.
  • 10Donoho D L. Denoising by Soft-thresholding[J]. IEEE Trans on IT, 1995, 41(3): 613-627.

共引文献67

同被引文献47

  • 1王晓军,孙洪,管鲍.SAR图像相干斑抑制滤波性能评价[J].系统工程与电子技术,2004,26(9):1165-1171. 被引量:20
  • 2黎新伍.基于MRF模型和EM算法的多源图像融合方法[J].传感技术学报,2006,19(2):525-529. 被引量:5
  • 3练秋生,孔令富.冗余轮廓波变换的构造及其在SAR图像降斑中的应用[J].电子与信息学报,2006,28(7):1215-1218. 被引量:10
  • 4王燕.聚类类别数目自动学习算法研究[J].计算机工程与设计,2007,28(2):252-253. 被引量:6
  • 5Do M N, Vetterli M. Contourlets. A Directional Multiresolution Image Representation[C]// Proc of IEEE Intet National Conference on Image Processing Rochester. NY: 2002: 357- 360.
  • 6Duncan D Y. Po and Minh N. Do. Directional Multiseale Modeling of ImagesUsing the Contourlet Transform[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006,15 (6) : 1610-1620.
  • 7Glenn R. Easley, Member, IEEE, Demetrio Labate, and Flavia Colonna. Shearlet Based Total Variation Diffusion for Denoising[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING. 2009. 2, 18(2) :260-268.
  • 8DO M N,Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation [J]. IEEE Trans. Image Processing. 2005: 1-16.
  • 9Bamberger R. Smith M J. A Filter Bank for the Directional Decomposition of Image: Theory and Design[J ].IEEE Trans. Signal Processing, 1992,40 (4) : 882-893.
  • 10匡纲要,高贵,蒋咏梅.合成孔径雷达[M].长沙:国防科技大学出版社.2007:9-11.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部