期刊文献+

轴力作用下带弹性支座的Timoshenko梁的动力优化 被引量:1

Dynamic optimization of Timoshenko beam with internal elastic support under axial force
下载PDF
导出
摘要 考察了轴力作用下中间带支座的Timoshenko梁的动力优化问题,在指出传统回传矩阵法优越性的基础上提出了实数形式的回传矩阵列式,从而避免了回传矩阵法在复数域内的运算,方便了频率的求解,并在一定程度上提高了计算效率.同时利用该方法建立了频率方程,给出了算例,验证了该方法的计算精度及高频计算的稳定性,并且探讨了轴力、支座位置及支座刚度对梁动力性能的影响,确定了最佳支座位置和最小支座刚度.提出的实数形式回传矩阵列式不仅适用于任何一维结构形式,还可将其应用于连续梁、平面框架和空间框架等复杂结构的静动力分析. A new reverberation-ray matrix method formulated completely in real form(RF-RMM) was presented to avoid computation in complex domain and facilitate the search of frequencies as well as improve the computational efficiency. A frequency equation was established and numerical examples were given to demonstrate the accuracy and numerical stability in high-frequency range of the proposed method. The effects of axial force, the location and stiffness of the internal elastic support on the dynamic performance were investigated, and the optimized location and the minimized stiffness were determined. Besides one-dimensional structure, the RF-RMM can also be applied to static/dynamic analysis of multi-span beams, planar frames and complex space framed structures.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第1期60-65,共6页 Journal of Zhejiang University:Engineering Science
基金 新世纪优秀人才支持计划资助项目(NCET-05-05010) 高等学校博士学科点专项科研基金资助项目(20060335107) 国家自然科学基金资助项目(10432030) 国家杰出青年基金资助项目(10725210)
关键词 回传矩阵法 中间弹性支座 轴力 TIMOSHENKO梁 实数形式 reverberation-ray matrix method internal elastic support axial force Timoshenko beam real form
  • 相关文献

参考文献14

  • 1COURANT R, HILBERT D. Methods of mathematical physics [M]. New York: Interscience Publishers, 1953.
  • 2AKESSON B, OLHOFF N. Minimum stiffness of optimally located supports for maximum value of beam eigenfrequencies [J]. Journal of Sound and Vibration, 1988, 120 (3): 457-463.
  • 3RAO C K. Frequency analysis of clamped-clamped uniform beams with intermediate elastic support [J]. Journal of Sound and Vibration, 1989, 133 (3) : 502-509.
  • 4WANG C Y. Minimum stiffness of an internal elastic support to maximize the fundamental frequency of a vibrating beam [J]. Journal of Sound and Vibration, 2003, 259(1) : 229-232.
  • 5WANG D, JIANG J S, ZHANG W H. Optimization of support positions to maximize the fundamental frequency of structures [J]. International Journal for Numerical Methods in Engineering, 2004, 61 (10) : 1584-1602.
  • 6THOMSON W T. Transmission of elastic waves through a stratified solid medium [J]. Journal of Applied Physics, 1950, 21: 89-93.
  • 7HASKELL N. The dispersion of surface waves on multilayered media [J]. Bulletin of Seismic Society of America, 1953, 43: 17-34.
  • 8HOWARD S M, PAO Y H. Analysis and experiments on stress waves in planar trusses [J]. Journal of Engineering Mechanics, 1998, 124(8): 884 -891.
  • 9PAO Y H, KEH D C, HOWARD S M. Dynamic response and wave propagation in plane trusses and frames [J]. AIAA Journal, 1999, 37(5) : 594-603.
  • 10PAO Y H, SU X Y, TIAN J Y. Reverberation matrix method for propagation of sound in a multilayered liquid [J]. Journal of Sound and Vibration, 2000, 230 (4): 743-760.

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部