期刊文献+

扩充欧空间中单纯复形的一个计数问题

A Count Problem of Simplicial Complex in Euclidean Space
下载PDF
导出
摘要 通过推广平图和圈的概念,给出平复形的概念.证明m=3时,对于具有a0个顶点的极大平复形K,其3维单形的个数为3a0-10;2维单形的个数为6a0-20;1维单形的个数为4a0-10;并猜想m≥2时,对于极大平复形K,其m维单形的个数为m(a0-m-1)+2. A popularization in the concept of planar graph and cycle will be carried out to yield the concept of planar complex. We prove that when m = 3 , the number of 3-dimension simplex is 3a0-10 for maximal planar complex K ; the number of 2-dimension is 6a0-20 and the number of 1-dimension is 4a0-10. And we guess that when m ≥ 2, the number of m -dimension simplex is m(a0-m-1 ) + 2 for maximal planar complex K.
作者 朱玉扬
出处 《合肥学院学报(自然科学版)》 2008年第1期1-4,共4页 Journal of Hefei University :Natural Sciences
基金 安徽省教育厅自然科学基金项目(2005KJ220) 合肥学院创新教学研究基金项目(2005027)
关键词 单纯复形 平复形 极大平复形 极大单形剖分 simplicial complex cycle planar complex maximal planar complex maximal simplicial decomposition
  • 相关文献

参考文献4

  • 1刘彦佩.图的平面性判定与平面嵌入[J].应用数学学报,1979,(2):350-365.
  • 2王新,车向凯.4-连通平面图中的圈[J].黑龙江大学自然科学学报,2007,24(2):270-274. 被引量:1
  • 3[5]Bondy J A,Murty U S R.Graph Theory with Applications[M].London and Basingstoke:Macmillan Press,1976:145-179.
  • 4[6]Harary F.Graph Theory[M].Addison-Wesley:Reading Mass,1969:120-138.

二级参考文献9

  • 1邦迪JA 默蒂USR.图论及其应用[M].北京:科学出版社,1984..
  • 2WHITNEY H. A theorem on graphs[J]. Ann. of Math, 1931,32:378 -390.
  • 3TUTTE T. A theorem on planar graphs[ J ]. Trans Amer Math Soc, 1956,82:99 - 116.
  • 4HOLTON D A, MCKAY B D. The smallest non - Hamihonian 3 - connected cubic planar graphs have 38 vertices[J]. J Combin Theory Ser B 1988,45 : 305 - 319.
  • 5THOMASSEN C. A theorem on path in planar graphs[J]. J Graph Theory, 1983,7 : 169 - 176.
  • 6THOMAS R, YU X. 4 -connected projective- plannar graphs are Hamihonian [ J ]. J Combin Theory Set B, 1994,62:114 -132.
  • 7SANDERS D P. On paths in planar graphs[J]. J Graph Theory, 1997, 24:341 -345.
  • 8CHEN Guan - tao, FAN Geng - hua, YU Xing - xing. Cycles in 4 - connected planar graphs[J]. European Journal of Combinatorics, 2004,25:763 - 780.
  • 9MARTINOV N. Uncontractible 4 -connected graphs[ J ]. J Graph Theory, 1982,6: 343 -344.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部