期刊文献+

一种改进的关联规则自顶向下算法 被引量:4

An Improved Top to Bottom Algorithm for Mining Association Rules
下载PDF
导出
摘要 关联规则是数据挖掘的主要技术。文中介绍了关联规则的基本概念,阐述了自顶向下算法的基本思想和存在的不足,扩展了相关定义和性质,提出了基于自顶向下算法基础上的改进算法。该算法的主要特点是运用集合运算的思想和递归的方法,保存前面扫描时比较运算的结果进行最大频繁集的查找。最后用实例进行仿真实验并做了比较分析,效率有所提高。 Association rules are the main technique for data minning. Introduce the basic concept of mining association rules, elaborate the basic thought and existent shortage of the top to bottom algorithm, expand the related definition and property and put forward improved algorithm. Based on top to bottom algorithm, restored last results that are scanning, the max frequent itemset can be refined by using the gathering thought and the recursion method. Finally, carry on analysis by using solid examples. This algorithm is suitable for the large database.
出处 《计算机技术与发展》 2008年第2期136-138,155,共4页 Computer Technology and Development
基金 国家自然科学基金项目(40574002) 广西自然科学基金项目(0448076)
关键词 数据挖掘 关联规则 频繁集 支持数 自顶向下 data mining association rules frequent itermset supporting count top to bottom
  • 相关文献

参考文献8

二级参考文献31

  • 1KrzysztofCios, WitoldPedrycz, Roman Swiniarski. Data mining methods for knowledge discovery [M]. By Kluwer Academic Publishers, 1998.1-4.
  • 2Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases [C]. Proceedings of the ACM SIGMOD Conference on Management of data, 1993.207-216.
  • 3Gunopulos D, Mannila H, Saluja S. Discovering all most secific sentences by randomized algorithm [C]. Proc. 13th Int'l Conf. Database Theory (ICDT), 1997.
  • 4Hah E, Pei J, Yin Y. Scalable parallel data mining fro association rules [C]. Proc. ACM Special Interest Group on Management of Data (SIGMOD), 1997.
  • 5Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases [C]. Proc. 20th Very Large Data Base Conf., 1994.
  • 6R Agrawal, T Imielinski, A Swami. Mining Association Rules between Sets of Items in Large Databases[A]. Proc.1993 ACM_SIGMOD Int Conf Management of Data [C].Washington, DC: ACM Press, 1993: 207~216.
  • 7R Agrawal, R Strikant. Fast Algorithms for Mining Association Rules[A]. Proceedings of the 20th VLDB Conference [C]. Santiago, Chile, 1994: 247~299.
  • 8J S Park, M Chen and P S Yu. An Effective Hash Based Algorithm for Mining Association Rules. ACM SIGMOD International Conference Management of Data. 1995.
  • 9A Savasere, E Omiecinski and S Navathe. An Efficient Algorithm for Mining Association Rules. Proceedings of the 21st VLDB Conference Zurich, Swizerland, San Francisco: Morgan Kaufmann, 1995: 432~444.
  • 10J Han, J Pei, Y Yin. Mining Frequent Patterns without Candidate Generation. SIGMOD'00, Dallas, TX. May 2000: 1~12.

共引文献164

同被引文献31

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部