期刊文献+

贵阳地表水-地下水的硫和氯同位素组成特征及其污染物示踪意义 被引量:28

δ^(37)Cl and δ^(34)S Variations of Cl^- and SO_4^(2-) in Groundwater and Surface Water of Guiyang Area,China
下载PDF
导出
摘要 喀斯特地表水和地下水的交换活跃,地下水系统容易受到地表污染物的污染。为了解喀斯特城市地表水—地下水系统污染特征和污染物质来源,对贵阳市地表水、地下水、雨水和城市排污污水的硫同位素和氯同位素组成变化进行了研究。贵阳市不同类型水体的δ37Cl值在-4.07‰~+2.03‰之间变化,δ34SSO4值变化为-20.4‰~+20.9‰。大气输入物质和城市排污污水的δ37Cl、δ34S及Cl-/SO42-比值与地表水和地下水的不同,稳定硫和氯同位素的结合研究为示踪地下水污染物来源提供了有效研究手段。贵阳市地下水中的Cl-和SO24-至少有4种来源,人为活动通过城市排污和大气输入向地下水系统大量输入了硫酸盐和氯离子。 Due to active exchange between surface water and ground water in a karstic hydrological system, we carried out a study of δ^37Cl and δ^34S variations of chloride and sulfate ions in the karstic surface/ground water system of Guiyang city, southwestern China, with the and the sources of the contaminants. The surface, main purpose to understand ground water environmental pollution and the sources of the contaminants. The surface, ground, rain and waste water show variable δ^37Cl and δ^34S values, with δ^37Cl values varying between -4.07%0 and + 2.03%0, and δ^34S values between -20.4%0 and + 20.9%00 The studied atmospheric and anthropogenic inputs have specific range of δ^37 Cl and δ^34S values, which can provide an effective isotopic method for tracing contaminants in a ground water system. We conclude that at least four sources exist to account for the variations of δ^37Cl and δ^34S values of chloride and sulfate ions in the ground water system, and that human activities have inputted a significant amount of sulfate and chloride ions, as well as oth-er contaminants into the studied ground water system through atmospheric emission and municipal sewage.
出处 《地球科学进展》 CAS CSCD 北大核心 2008年第2期151-159,共9页 Advances in Earth Science
基金 国家自然科学基金项目“大气和地表污染物输入对贵阳市地下水系统的影响:氯和硫同位素研究”(编号:40603004) 国家重点基础研究发展计划项目“西南喀斯特山地石漠化与适应性生态系统调控”(编号:2006CB403205) 中国科学院西部行动计划项目“西南喀斯特生态系统退化机制与适应性修复试验示范研究”(编号:KZCX2-XB2-08-01)共同资助
关键词 喀斯特 地表水-地下水 氯同位素 硫同位素 污染 Karst Surface water/ground water Cl isotope S isotope Contamination.
  • 相关文献

参考文献32

  • 1Liu Congqiang, Li Siliang, Lang Yunchao, et al. Using δ^15N-and δ^18 O-Values to identify nitrate sources in karst ground water, Guiyang, Southwest China[J ]. Eaviroametal Science & Technology,2006, 40(22) : 6 928-6 933.
  • 2Lang Yunchao, Liu Congqiang, Zhao Zhiqi, et al. Geochemistry of surface and ground water in Guiyang City, China: Water/rock interaction and pollution in a karst hydrological system [ J ]. Applied Geochemistry,2006, 21 : 887-903.
  • 3Li Siliang, Liu Congqiang, Tao Faxiang,et al. δ^13 CDIC as a tracer to monitor pollution and ecological changes in ground water [ J ]. Ground Water,2005, 43 (4) : 494-499.
  • 4郎赟超,刘丛强,韩贵琳,赵志琦,李思亮.贵阳市区地表/地下水化学与锶同位素研究[J].第四纪研究,2005,25(5):655-662. 被引量:27
  • 5郎赟超,刘丛强,赵志琦,李思亮,韩贵琳.贵阳市地表水地下水化学组成:喀斯特水文系统水-岩反应及污染特征[J].水科学进展,2005,16(6):826-832. 被引量:68
  • 6李思亮,刘丛强,肖化云,陶发祥,郎赟超,韩贵琳.δ^(15)N在贵阳地下水氮污染来源和转化过程中的辨识应用[J].地球化学,2005,34(3):257-262. 被引量:55
  • 7李思亮,刘丛强,陶发祥,郎赟超,韩贵琳.碳同位素和水化学在示踪贵阳地下水碳的生物地球化学循环及污染中的应用[J].地球化学,2004,33(2):165-170. 被引量:51
  • 8Dowuona G N, Mermut A R, Krouse H R. Stable isotope geochemistry of sulfate in relation to hydrogeology in souther Saskatchewan, Canada [ J ]. Applied Geochemistry, 1993, 8 : 255- 263.
  • 9Barth S R. Geochemical and boron, oxygen and hydrogen isotopic constraints on the origin of salinity in groundwaters from the crystalline basement of the Alpine Foreland[ J]. Applied Geochemistry, 2000, 15: 937-952.
  • 10Dogramaci S S, Herczeg A L, Schiff S L, et al. Control on δ^34S and isIS o of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes[ J ]. Applied Geochemistry,2001, 16 : 475-488.

二级参考文献82

  • 1储雪蕾,赵瑞,臧文秀,雷加锦,唐跃刚.煤和沉积岩中各种形式硫的提取和同位素样品制备[J].科学通报,1993,38(20):1887-1890. 被引量:20
  • 2郎赟超,刘丛强,赵志琦,李思亮,韩贵琳.贵阳市地表水地下水化学组成:喀斯特水文系统水-岩反应及污染特征[J].水科学进展,2005,16(6):826-832. 被引量:68
  • 3[1]Wigley T M L,Plummer L N,Pearson F J Jr.Mass transfer and carbon isotope evolutionin natural water systems[J].Geochim Cosmochim Acta,1978,42(8):1117~1139.
  • 4[2]Fritz P,Fontes J Ch,Frape S K,et al.The isotope geochemistry of carbon in groundwater at stripa [J].Geochim Cosmochim Acta,1989,53(8):1765~1775.
  • 5[3]Aucour A-M,Sheppard S M F,Guyomar O,et al.Use of 13C to trace origin and cycling of inorganic carbon in the Rhone river system [J].ChemGeol,1999,159(1-4):87~105.
  • 6[4]Helie J-F,Hillaire-Marcel C,Rondeau B.Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St.Lawrence River-Isotopic and chemical constraint [J].Chem Geol,2002,186(1-2):117~138.
  • 7[7]Fang J S,Barcelona M J,Krishnamurthy R V,et al.Stable carbon isotope biogeochemistry of a shallow sand aquifer contaminated with fuel hydrocarbons [J].Appl Geochem,2000,15(2):169~181.
  • 8[9]Atekwana E A,Krishnamurthy R V.Seasonal variations of dissolved inorganic carbon and δ13C of surface waters:Application of a modified gas evolution technique [J].J Hydrol,1998,205(3-4):265~278.
  • 9[10]Desmarais K,Rojstaczer S.Inferring source waters from measurements of carbonate spring response to storms [J].J Hydrol,2002,260(1-4):118~134.
  • 10[12]Cane G,Clark I D.Tracing ground water recharge in an agricultural watershed with isotopes [J].Ground Wat,1999,37(1):133~139.

共引文献217

同被引文献428

引证文献28

二级引证文献269

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部