摘要
在对心电图进行离散小波变换获得特征空间的基础上,提出了基于最大散度的特征搜索算法。对特征空间进行搜索得到不同维数下的优化特征组合,通过研究这些优化特征组合的散度值随维数的变化趋势,最终确定特征向量的特征构成,并以此特征向量训练BP神经网络。取自MIT-BIH数据库的四类心电图(正常心搏、左束支传导阻滞心搏、右束支传导阻滞心搏和起搏心搏)的分类正确率达到93.9%,检出率较高。
This paper presents a method of using feature searching algorithm based on maximal divergence value to get the optimized feature combinations at different dimensions from feature space. Feature space is obtained through wavelet transform on ECG beat. Then the feature vector is determined by analyzing the changes of divergence value of those optimized feature combinations along with the dimensions. BP artificial neural network is trained by the feature vector and four types of ECG beats(normal beat, left bundle branch block beat, right bundle branch block beat and paced beat) obtained from MIT-BIH database are classified with a success of 93.9%.
出处
《生物医学工程学杂志》
EI
CAS
CSCD
北大核心
2008年第1期53-56,共4页
Journal of Biomedical Engineering
关键词
心电图分类
神经网络
小波变换
特征提取
散度
ECG classification Neural network Wavelet transform Feature extraction Divergence