期刊文献+

反映扩散方程的全局吸引子的存在性

下载PDF
导出
摘要 文章讨论了抛物型方程ut-Δu+λ|u|αu=f(x)+g(u)在Ω×(0,∞)上,在满足初值条件u(x,0)=u0(x)∈L和零边界条件下,解对时间的连续性和唯一性,得到了解的连续半群S(t):L→LP(p≥1),由此得到了方程解的全局吸引子。
机构地区 河海大学理学院
出处 《内蒙古科技与经济》 2008年第1期61-63,共3页 Inner Mongolia Science Technology & Economy
  • 相关文献

参考文献8

  • 1R. Temam, .Infinite-dimensional Dynamical in mechanics and Physics, Springer, New York, 1997.
  • 2Chen Caisheng, On Global Attractor for m- Laplacian Parabolic Equation with Local and Nonlocal Nonlinewrity, Nanjing, China, 2006.
  • 3Wang Bixiang, Attractors for reaction- diffusion equation in unbounded domains, Beijing, China, 1998.
  • 4Chen Caisheng, Existence of global attractors in for reaction - diffusion in, Nanjing, China, 2005.
  • 5A. Kh. Khanmamedov, Existence of a global attractor for the parabolic equation with non-linear laplacian principal part in an unbounded domain, AnKara, Turkey, 2004.
  • 6A. V. Babin, M. I. Vishik, Attractors of differential evolution equations in unbounded domain, Proc. Royo SocEdinburgh, Sect. A,116 ( 1990)221 - 223.
  • 7A. V. Babin, M. I. Vishik, Attractors of Evolution Equations, North - Holland, Amsterdam, 1992.
  • 8W. B. Deng, Z.W. Duan and C. H. Xie, The blow- up rate fore a dengerate parabolic equation with nonlocal soure, J. Math. Anal. , 264 (2) (2001), 577 - 597.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部