期刊文献+

运用酵母双杂交系统筛选肌营养不良相关蛋白2(DRP2)相互作用蛋白(英文) 被引量:1

Identification of a dystrophin-related protein 2(DRP2) associating protein by yeast two hybridization
下载PDF
导出
摘要 目的应用酵母双杂交系统筛选小鼠、大鼠、人类大脑文库中与DRP2相互作用的蛋白,分析中枢神经系统中DRP2分子复合体的组成成分。方法设计3个含有DRP2不同蛋白结构域的诱饵质粒,在完成诱饵质粒的自激活性的鉴定后,对小鼠、大鼠、人类脑MATCHMAKER cDNA文库进行筛选。结果运用DRP2蛋白N-Bait筛选大鼠脑MATCHMAKER cDNA文库,笔者获得了一个阳性文库质粒。该质粒的插入子编码一种SNAP25相互作用的蛋白质Scoilin。Scoilin又被命名为Zwint-1蛋白。同时笔者还确定了这两种相互作用蛋白质的精确结构域:DRP2蛋白以其含有两个Spectrin重复和一个WW蛋白结构域的氨基端与Scoilin(Zwint-1)全蛋白相互作用。结论应用酵母双杂交,笔者于大鼠大脑中找到了DRP2的相互作用的蛋白质Scoilin(Zwint-1),并且确定了这两种相互作用蛋白质的精确结构域。 [Objective] To reveal the candidate association members of the DRP2 molecular complex in the central nervous system, the mouse, rat and human brain MATCHMAKER cDNA library was screened by yeast two-hybridization. [Methods] Three different baits spanning various domains of the DRP2 protein were constructed. The three baits were used to screen the mouse, rat and human brain MATCHMAKER cDNA library after being fully validated. [Results] A positive interaction protein Scoilin with DRP2 was found via the rat brain library screening with the N-bait. The Scoilin is also named Zwint-1 protein. The intricate interaction domains between these two proteins were further located: via associating with the two spectrin repeats and the WW domain at the N-terminus of the DRP2 protein, the full length Scoilin (Zwint-1) protein and DRP2 are associated with each other.. [Conclusions] Scoilin (Zwint-1) protein ,an association member of the DRP2 protein, was found in the brain via Y2H, and the intricate interaction domains in these two proteins were further located.
出处 《中国现代医学杂志》 CAS CSCD 北大核心 2008年第2期133-137,共5页 China Journal of Modern Medicine
关键词 Dystrophin-related protein2(DRP2) 酵母双杂交 Scoilin蛋白 Zwint-1蛋白 dystrophin-related protein 2 (DRP2) yeast-two hybridization scoilin zwint-1/
  • 相关文献

参考文献10

  • 1JIN H, TAN S, HERMANOWSKI J, et al. The dystrotelin, dystrophin and dystrobrevin superfamily: new paralogues and old isoforms [J]. BMC Genomies, 2007, 8: 19.
  • 2ROBERTS RG, FREEMAN TC, KENDALL E, et al. Characterization of DRP2, a novel human dystrophin homologue[J]. Nat Genet, 1996, 13(2): 223-226.
  • 3SHERMAN DL, FABRIZI C, GILLESPIE CS, et al. Specific disruption of a schwann cell dystrophin-related protein complex in a demyellnating neuropathy[J]. Neuron, 2001, 30(3): 677-687.
  • 4SCHERER SS, ARROYO EJ. Recent progress on the molecular organlzation of myelinated axons[J]. J Peripher Nerv Syst, 2002, 7(1): 1-12.
  • 5NIETHAMMER M, SHENG M. Identification of ion channel-associated proteins using the yeast two-hybrid system[J]. Methods Enzymol, 1998, 293: 104-122.
  • 6CSEKE LJ, RAVINDER N, PANDEY AK, et al. Identification of PTM5 protein interaction partners, a MADS-box gene involved in aspen tree vegetative development[J]. Gene, 2007, 391 (1-2): 209- 222.
  • 7LEE HK, SAFIEDDINE S, PETRALIA RS, et al. Identification of a novel SNAP25 interacting protein (SIP30)[J]. J Neurochem, 2002, 81 (6): 1338-1347.
  • 8WANG H, HU X, DING X, et al. Human Zwint-1 specifies localization of Zeste White 10 to klnetochores and is essential for mitotic checkpoint signaling[J]. J Biol Chem, 2004, 279(52): 54590-54598.
  • 9HIROSE H, ARASAKI K, DOHMAE N, et al. Implication of ZW10 in membrane trafficking between the endoplasmie retieulum and Golgi[J]. J Embo, 2004, 23(6): 1267-1278.
  • 10LIN YT, CHEN Y, WU G, et al. Hec1 sequentially recruits Zwint- 1 and ZW10 to kinetochores for faithful chromosome segregation and spindle checkpoint control[J]. Oncogene, 2006, 25(52): 6901- 6914.

同被引文献27

  • 1Pareyson D, Marchesi C. Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol, 2009, 8: 654-667.
  • 2Tokunaga S, Hashiguchi A, Yoshimura A, et al. Late-onset Charcot-Marie-Tooth disease 4F caused by periaxin gene mutation. Neurogenetics, 2012, 13: 359-365.
  • 3Azzedine H, Senderek J, Rivolta C, et al. Molecular genetics of charcot-marie-tooth disease: from genes to genomes. Mol Syndromol, 2012, 3: 204-214.
  • 4Boerkoel C F, Takashima H, Stankiewicz P, et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Am J Hum Genet, 2001, 68: 325-333.
  • 5Patzig J, Jahn O, Tenzer S, et al. Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J Neurosci, 2011, 31: 16369-16386.
  • 6Williams A C, Brophy P J. The function of the Periaxin gene during nerve repair in a model of CMT4F. J Anat, 2002, 200: 323-330.
  • 7Dytrych L, Sherman D L, Gillespie C S, et al. Two PDZ domain proteins encoded by the murine periaxin gene are the result of alternative intron retention and are differentially targeted in Schwann cells. J Biol Chem, 1998, 273: 5794-5800.
  • 8Han H, Kursula P. Periaxin and AHNAK nucleoprotein 2form intertwined homodimers through domain swapping. J Biol Chem, 2014, 289: 14121-14131.
  • 9Shi Y, Zhang L, Yang T. Nuclear export of L-periaxin, mediated by its nuclear export signal in the PDZ domain. PLoS One, 2014, 9: e91953.
  • 10Gillespie C S, Lee M, Fantes J F, et al. The gene encoding the Schwann cell protein periaxin localizes on mouse chromosome 7(Prx). Genomics, 1997, 41: 297-298.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部