期刊文献+

铝合金基体上超疏水表面的制备 被引量:68

Fabrication of Super-Hydrophobic Surfaces on Aluminum Alloy
下载PDF
导出
摘要 采用简单化学刻蚀的方法制备出多晶铝合金基体上的超疏水表面。刻蚀后的铝合金表面经过氟化处理后具有了超疏水的性质,水滴与表面的接触角达到156°,接触角滞后为5°。通过对表面进行扫描电镜分析可知,超疏水铝合金表面上具有了由长方体状的凸台和凹坑构成的深浅相间的微纳米结构,这些微纳米结构相互连通形成凹凸不平的"迷宫"结构,这种结构经氟化修饰后,可捕获空气,形成水与基底之间的气垫,对表面超疏水性的产生起到了关键的作用。文中对铝合金基体上的超疏水现象以Cassie理论进行了分析,结果表明,水与表面形成了非均匀接触,约12%的面积是水滴和基体接触,而有约88%的面积是水滴和空气接触。研究中考查了不同刻蚀时间以及不同刻蚀液浓度对表面疏水效果的影响。最佳制备条件为:盐酸溶液浓度为4.0mol·L·1,刻蚀时间为12min。 A simple chemical etching method was developed for fabricating the super-hydrophobic surface on polycrystalline aluminum alloy. After the chemical etched surface was treated with fluorination, the aluminum alloy surface exhibits a super-hydrophobic property with water contact angle of 156° and contact angle hysteresis of 5°. The surface morphology was inspected with scanning electron microscope, and it was found that the surface is configured in a labyrinthic structure with plateaus and caves of micro-nanostructure. The caves in the labyrinth trap air in them, which can form air cushion between water and the surface. This micro-nano hierarchical structure plays an important role in the formation of the super-hydrophobicity. The super-hydrophobic phenomenon of the prepared surface was analyzed with Cassie theory, and the result shows that only about 12% of the water contact surface is contacted with the metal substrate and the rest 88% is contacted with the air cushion. The effects of the etching time and the etchant (HCI solution) concentration on the super-hydrophobicity were investigated, and the optimum etching conditions found are 12 min of etching time and 4.0 mol·L^-1 of HCI solution concentration.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2008年第1期6-10,共5页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(20476014)
关键词 超疏水 接触角 微纳米结构 化学刻蚀 super-hydrophobic contact angle micro-nanostructure chemical etching
  • 相关文献

参考文献20

  • 1江雷.从自然到仿生的超疏水纳米界面材料[J].科技导报,2005,23(2):4-8. 被引量:110
  • 2景文珩,吴俊,邢卫红,徐南平.片状陶瓷膜润湿动力学的测试[J].高校化学工程学报,2004,18(2):141-145. 被引量:4
  • 3徐坚,王玉军,骆广生,戴猷元.膜材料的亲疏水性对固定化脂肪酶的影响[J].高校化学工程学报,2006,20(3):395-400. 被引量:13
  • 4Feng L, Li S, Li Y et al. Super-hydrophobic surfaces: from natural to artificial [J]. Adv Mater, 2002, 14(24): 1857-1860.
  • 5Gao X F, Jiang L. Water-repellent legs of water striders [J]. Nature, 2004, 432(4): 36-36.
  • 6郑黎俊,乌学东,楼增,吴旦.表面微细结构制备超疏水表面[J].科学通报,2004,49(17):1691-1699. 被引量:58
  • 7Hikita M, Tanaka K, Nakamura T et al. Super-liquid-repellent surfaces prepared by colloidal nano-particles covered with fluoroalkyl groups [J]. Langmuir, 2005, 21(16): 7299-7302.
  • 8Shirtcliffe N J , McHale G, Newton M I et al. Intrinsically super-hydrophobic organosilica sol-gel foams [J]. Langmuir, 2003, 19(14): 5626-5631.
  • 9Wu Y, Sugimura H, Inoue Y et al. Preparation of hard and ultra water-repellent silicon oxide films by microwave plasma-enhanced CVD at low substrate temperatures [J]. Thin Solid Films, 2003, 435(1-2): 161-164.
  • 10Chen A, Peng X, Koczkur K et al. Super-hydrophobic tin oxide nanoflowers [J]. Chem Commun, 2004, (17): 1964-1965.

二级参考文献139

  • 1宋锡瑾,王杰.分子筛固定氨基酰化酶I的研究[J].高校化学工程学报,2004,18(5):617-620. 被引量:11
  • 2江雷.从自然到仿生的超疏水纳米界面材料[J].科技导报,2005,23(2):4-8. 被引量:110
  • 3Lafuma A,Quere D.Superhydrophobic states.Nature Materials,2003,2:457~460
  • 4Feng L,Li S,Li Y,et al.Super-hydrophobic surfaces: From Natural to artificial.Adv Mater,2002,14:1857~1860
  • 5Blossey R.Self-cleaning surfaces-virtual realities.Nature Materials,2003,2:301 ~306
  • 6Wang R,Hashimoto K,Fujishima A,et al.Light-induced amphiphilic surfaces.Nature,1997,388:431~432
  • 7Benedix R,Dehn F,Quaas J,et al.Application of titanium dioxide photocatalysis to create self-cleaning building materials.Lacer,2000,5:157~166
  • 8Neinhuis C,Barthlott W.Characterization and distribution of water-repellent,self-cleaning plant surfaces.Annals of Botany,1997,www.scichina.com79:667~677
  • 9Barthlott W,Neinhuis C.Purity of the sacred lotus or escape from contamination in biological surfaces.Planta,1997,202:1~8
  • 10Gu Z-Z,Uetsuka H,Takahashi K,et al.Structure color and the lotus effect.Angew Chem Int Ed,2003,42(8): 894~897

共引文献231

同被引文献734

引证文献68

二级引证文献360

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部