期刊文献+

基于改进的LS-SVM测量油气两相流空隙率 被引量:3

Improved LS-SVM Based Voidage Measurement of Oil-Gas Two-Phase Flow
下载PDF
导出
摘要 利用ECT电容传感器提供的电容测量值,基于改进的最小二乘支持向量机(LS-SVM),提出了一种油气两相流空隙率测量的新方法。运用该方法测量空隙率时,以ECT电容传感器获取的66个独立电容值作为空隙率模型的输入,计算即可得空隙率。建模阶段,针对LS-SVM使用中存在的问题,首先运用训练数据筛选技巧,对LS-SVM进行稀疏化改进,接着引入实数编码的遗传算法(RC-GA)优化LS-SVM参数,然后运用改进后的LS-SVM和基于RC-GA的参数选取方法建立空隙率测量模型。所提出的空隙率测量方法省去了常用ECT方法测量空隙率时的复杂耗时的图像重建过程,提高了空隙率测量的实时性。实验结果表明,提出的LS-SVM改进和参数优化方法是有效的,提出的空隙率测量方法具有实时性佳的优点,测量精度满足实际应用要求。 Based on the capacitance information provided by the capacitance sensors in Electrical Capacitance Tomography (ECT) system, and by means of the improved Least Squares Support Vector Machine (LS-SVM), a new voidage measurement method for oil-gas two-phase flow was proposed. In the measurement process, the 66 capacitance values from ECT sensor are the input of the voidage model, and the output of the model is the voidage value. In the model establishing stage, in order to solve the problems existing in current LS-SVM, pruning skill was employed for training data set to make LS-SVM sparse and robust at first, then Real-Coded Genetic Algorithm (RC-GA) was introduced to solve the difficult problem of parameters selection in LS-SVM. These two aspects were applied to establish the voidage model. The proposed new voidage measurement method implements voidage measurement directly, and omits the complicated and time-consuming image reconstruction which is usually needed for voidage measurement by using currently used ECT method. Using the method proposed, the real-time performance of voidage measurement was greatly improved. Experimental results demonstrate that both the improvement of LS-SVM and the parameters optimization are effective. The results also show that the real-time performance of the proposed voidage measurement method is good, and the measurement precision can satisfy application requirement.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2008年第1期18-22,共5页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金资助项目(50576084 60532020)
关键词 空隙率 电容 最小二乘支持向量机 两相流 实数编码的遗传算法 voidage capacitance least squares support vector machine two-phase flow real-coded genetic algorithm
  • 相关文献

参考文献13

  • 1LI Hai-qing(李海青).Two-Phase How Parameter Measurement and Applications(两相流参数检测及应用)[M].Hangzhou(杭州):Zhejiang University Press(浙江大学出版社),1991.
  • 2LI Hai-qing(李海青),HUANG Zhi-yao,et al(黄志尧等).Special Measurement Technology and its Applications(特种检测技术及应用)[M].Hangzhou(杭州):Zhejiang University Press(浙江大学出版社),2000.
  • 3王微微,王保良,黄志尧,李海青.利用电容层析成像技术快速测量油气两相流空隙率的研究[J].高校化学工程学报,2006,20(4):515-519. 被引量:4
  • 4Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 5Suykens J A K, Van Gestel T, De Brabanter J et al. Least Squares Support Vector Machines [M]. Singapore: World Scientific, 2002.
  • 6Sun B Y, Huang D S, Fang H T. Lidar signal denoising using least-squares support vector machine [J]. IEEE Signal Processing Letters, 2005, 12(2): 101-104.
  • 7刘涵,刘丁,郑岗,梁炎明,宋念龙.基于最小二乘支持向量机的天然气负荷预测[J].化工学报,2004,55(5):828-832. 被引量:48
  • 8Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers [A]. In: Proeeedings of the 5th Annual ACM Workshop on Computational Learning Theory [C], Pittsburgh: 1992, 144-152.
  • 9袁小芳,王耀南.基于混沌优化算法的支持向量机参数选取方法[J].控制与决策,2006,21(1):111-113. 被引量:55
  • 10Chapelle O, Vapnik V N, Bousquet O et al. Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46: 131-159.

二级参考文献19

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26(8):1117-1120. 被引量:65
  • 3Vapnik V. An Overview of Statistical Learning Theory[J]. IEEE Trans on Neural Networks, 1999, 10(5):988-999.
  • 4Christopher J C Burges. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, 2 (2):121-167.
  • 5Vladimir Cherkassky, Yunqian Ma. Practical Selection of SVM Parameters and Noise Estimation for SVM Regression[J]. Neural Networks , 2004, 17(1): 113-126.
  • 6LI Hai-qing(李海青).Two-Phase Flow Parameter Measurement and Applications(两相流参数检测及应用)[M].Hangzhou(杭州):Zhejiang University Press(浙江大学出版社),1991.
  • 7Hewitt G F.Measurement of Two Phase Flow Parameters[M].London:Academic Press,1978.
  • 8LIN Zong-hu(林宗虎).Characteristics of Gas-Liquid Two-Phase Flow in Pipelines and their Engineering Applications(管路内气液两相流特性及其工程应用)[M].Xi'an(西安):Xi'an Jiaotong University Press(西安交通大学出版社),1992..
  • 9LI Hai-qing(李海青),HUANG Zhi-yao,et al(黄志尧等).Special Measurement Technology and its Applications(特种检测技术及应用)[M].Hangzhou(杭州):Zhejiang University Press(浙江大学出版社),2000.
  • 10HUANG Zhi-yao,WANG Bao-liang,LI Hai-qing.Application of electrical capacitance tomography to the void fraction measurement of two-phase flow[J].IEEE Trans on Instrum Meas,2003,52(1):7-12.

共引文献106

同被引文献53

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部