期刊文献+

一类三种群食物链模型解的渐近性 被引量:2

An asymptotic behavior for a class of food chain model
下载PDF
导出
摘要 计论了一类具有第1类功能性反应函数和三种群食物链模型。利用代数方程得到了该模型存在的平衡点充分方程,应用Hurwitz判别法则及特征方程给出了该模型的平衡点局部渐近稳定的充分条件,利用计算机进行模拟仿真,得到了直观可视化结果,并且进一步说明了所得结果的生态意义。 A class of three - species food chain model with type 1 functional response is discussed. By using the algebraic equation theory, the sufficient condition fpr existence of equilibrium points of the model are obtained. By using Hurwize theory and the characteristic equation theory, the sufficient conditions for the locally asymptotic stability of the equilibrium points of the model are given. Simulated by using computer, a visualizational result is presented. And the biological meaning of the result in the paper is showm in detail.
作者 王爱丽
出处 《陕西理工学院学报(自然科学版)》 2008年第1期77-80,共4页 Journal of Shananxi University of Technology:Natural Science Edition
基金 宝鸡文理学院重点科研计划项目(ZK2547)
关键词 食物链模型 平衡点 稳定性 特征方程 food - chain model equilibrium point stability characteristic equation
  • 相关文献

参考文献7

二级参考文献18

  • 1Kuang Y,J Math Biol,1998年,36卷,389页
  • 2He X Z,J Math Anal Appl,1996年,198卷,355页
  • 3Kuang Y,Delay Differential Equations with Applications in Population Dynamics,1983年
  • 4Kuang Y
  • 5Cosner C,Lazer A C.Stable coexistece states in the Volterra-Lotka competition model with diffusion[J].SIAM J Appl Math,1984;44:1112-1132
  • 6Leung A,Clark D C.Bifurcations and large-time asymptotic behavior for prey-predator reaction-diffusions with Dirichlet boundary data[J].J Differential Equations,1980;35:113-127
  • 7Ruan W H,Feng W.On the fixed point index and multiple steady-state solutions of reaction diffusion systems[J].Differential Integral Equations,1995;8:371-392
  • 8Lakos N.Existence of steady-state solutions for a one-predator-two-prey system[J].SIAM J Math Anal,1990;21:647-659
  • 9Freedman H I,Waltman P.Persistence in a model of three interacting predator-prey populations[J].Math Biosci,1985;73:89-101
  • 10Pao C V.Convergence of solutions of reaction-diffusion systems with time delays[J].Nonlinear Anal,2002;48:349-362

共引文献90

同被引文献9

  • 1马知恩.种群生态学的数学建模与研究[M].合肥:安徽教育出版社,1994.41-45.
  • 2Braza P A.The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing[J].SIAM J Appl Math,2003,83:889-904.
  • 3Smoller J.Shock waves and reaction-diffusion equations[M].NewYork:Springer-Verlag,1983.
  • 4Du Y H,Hsu S B.A diffusive predator-prey model in heterogeneous environment[J].Differential Equations,2004,203:331-364.
  • 5Peng R,Wang M X.Positive steady-states of the Holling-Tanner prey-predator model with diffusion[J].Pros Roy Soc Edinburgh Sect A,2005,135:149-164.
  • 6TURCHIN P.Complex population dynamics:A theoretical/Empirial synthesis[M].New Jersey:Princeton University Press,2003.
  • 7LEAH Edelstein-Keshet.Mathematical models in biology[M].New York:The Random House,2004.
  • 8郭三刚,曹吉利,张琳.一种基于非均匀惩罚因子的序列无约束最优化外点新算法[J].陕西理工学院学报(自然科学版),2008,24(3):49-54. 被引量:3
  • 9彭锐,王明新.一个具有扩散和比例依赖响应函数捕食模型的定性分析[J].中国科学(A辑),2008,38(2):135-148. 被引量:16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部