期刊文献+

自适应多模快速背景差算法 被引量:6

Adaptive and Efficient Background Subtraction Using Multi-Models
下载PDF
导出
摘要 在多高斯模型的基础上,从场景中模型分布不均匀性出发,提出了一种新的快速背景差算法。该算法针对混合高斯模型中固定模型数量不足的问题,建立了模型产生和退出的机制,使模型数量能够自动适应场景特点,实现了高斯模型的实时自适应分布,即提高了准确性又有效地减少了模型的总量;同时,针对混合高斯模型中计算量大的问题,对模型参数的计算进行了优化,将耗时的浮点运算转化为整型运算,减少了计算量;算法中引入了生存时间和模型重现频率的概念,通过对模型重现频率的限制有效抑制高频噪声。与混合高斯模型的实验结果对比说明,该快速算法保持了原算法的优点,执行速度提高1倍以上,检测结果准确,算法内存消耗小,前景轮廓清晰,抑制高频噪声的能力强,整体效果优于混合高斯模型的背景差算法。 This paper presents an efficient background subtraction algorithm using multiple scene models to cope with variations of noises in a background. A mechanism has been developed to add and delete scene models so that the distribution of the models is adaptive to the background characteristics. The calculation for the model parameters has been optimized so as to avoid time-consuming floating point calculation. We introduced the living time and recurrent frequency to the models so that the algorithm can suppress high frequency background noises effectively by controlling the model recurrent frequency, Experiments using video data have been conducted to compare the performance of our algorithm with that of the mixture Gaussian model algorithm. The experimental results demonstrated that our algorithm can extract the foreground contour more precisely, efficiently and with less memory, while maintaining the advantages of the mixture Gaussian model algorithm. It was also found that'high frequency noises that cannot be rejected by the mixture Gaussian model can be suppressed.
作者 梁华 刘云辉
出处 《中国图象图形学报》 CSCD 北大核心 2008年第2期345-350,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60334010 60475029)
关键词 视频监控 背景差算法 混合高斯模型 快速算法 VSAM(video surveillance and monitoring) , background subtraction, mixture gaussian model, fast algorithm
  • 相关文献

参考文献14

  • 1Manzanera A, Richefeu J. A robust and computationally efficient motion detection algorithm based on ∑-△ background estimation[ A ]. In: Proceedings of Indian Conference on Computer Vision, Graphics and Image Processing[ C ] , Kolkata, India, 2004 : 46-51.
  • 2Richefeu J, Manzanera A. A new hybrid differential Filter for motion detection [ A]. In: Proceedings of International Conference on Computer Vision and Graphics [ C ] , Warsaw, Poland, 2004 : 22-24.
  • 3Stauffer C, Grimson E. Learning patterns of activity using real-time tracking[ J]. IEEE Transactions on Pattern Recognition and Machine Intelligence, 2000, 22 (8) : 747-757.
  • 4Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [ J]. Computer Vision and Pattern Recognition, 1999, 2:246-252.
  • 5Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction [ A ]. In: Proceedings of the 7^th IEEE International Conference on Computer Vision Frame-Rate Workshop [C], Kerkyra, Greece, 1999:246-252.
  • 6Oliver N M, Rosario B, Pentland A P. A bayesian computer vision system for modeling human interactions[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22:831-843.
  • 7Haritaoglu I, Harwood D, Davis L S. W4: real-time surveillance of people and their activities[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 809-830.
  • 8Javed O, Shah M. KNIGHT^M: A Real Time Surveillance System [ OL]. http ://www. cs. ucf. edu/- vision/papers.
  • 9Javed O, Shafique K, Shah M. A hierarchical approach to robust background subtraction using color and gradient information[ A ]. In: Proceedings of IEEE Workshop on Motion and Video Computing[ C ] , Washington, DC, USA, 2002:22-27.
  • 10Javed O, Shah M. Tracking and object classification for automated surveillance [ A ]. In: Proceedings of the Seventh European Conference on Computer Vision [ C ] , Copenhagen, Denmark, 2002, 4: 343-357.

同被引文献49

  • 1孙中森,张怀柱,宋建中.基于Mean Shift算法的嵌入式实时彩色目标跟踪[J].电子器件,2007,30(5):1611-1613. 被引量:1
  • 2杨建全,梁华,王成友.视频监控技术的发展与现状[J].现代电子技术,2006,29(21):84-88. 被引量:62
  • 3杨广林,孔令富.基于图像分块的背景模型构建方法[J].机器人,2007,29(1):29-34. 被引量:12
  • 4Rafael C.Gonzalez,Richard E.Woods.数字图像处理(第二版)[M].北京:机械工业出版社,2002.
  • 5Ostu N. A Threshold Selection Method from Gray-Level Histograms[J]. IEEE Transactions on System Management and Cybemetic, 1979,9 (1) : 62-66.
  • 6Wren C R, Azarbayejani A. Pfinder: Real-time tracking of the human body [J]. IEEE Transactions on Pattern Analysis and Maehine I.ntelligence(S0162-8828), 1997, 19(7): 780-785.
  • 7Lee D S. Effective Gaussian mixture learning for video background subtraction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2005, 27(5): 827-832.
  • 8Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking [J]. IEEE Transactions on Pattern Analysis and MaehineIntelligenee(S0162-8828), 2000, 22(8): 747-757.
  • 9ZHANG G Y, LIU G Z, ZHU H, et al. Ore image thresholding using bi-neighbourhood Otsu's approach [J]. Electronics Letters(S0013-5194), 2010, 46(25): 1666-1668.
  • 10Intel.Intel open source computer vision library[EB/OL].[2009-07-18].http://www.software.intel.com/en-us/articles/inte.

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部