期刊文献+

应用短程线主动轮廓线的图像多目标面积同时测量 被引量:2

Simultaneous measurement of area for multiple image objects based on geodesic active contour
下载PDF
导出
摘要 提出了一种新颖的图像多目标面积同时测量的方法,用于精确测量多个不同形状的图像目标面积。该方法应用了短程线主动轮廓线模型,分2个步骤进行。首先利用水平集函数φ的迭代使主动轮廓线由初始位置向各个目标的轮廓边缘收敛。其次,对于收敛后的主动轮廓线,分别计算出各目标边界的亚像素面积和图像目标的内部像素个数,从而同时求出各个图像目标的面积。实验结果表明,该方法的测量重复性误差<±0.5%;和传统的面积测量方法相比,具有测量效率高(同时测量多个目标面积)和测量精度高的优点。 A novel scheme to the area measurement of multiple image objects is proposed for simultaneous and exactly measurement of multiple objects' areas with different shapes. By using a model of geodesic active contour, this scheme consists of two steps. Firstly, the active contour converges from an initial position to the object's contour edge via the iteration of level set functional φ. Secondly, for the converged active contour, a sub-pixel area and the number of internal pixels of image objects are computed to obtain every object's area simultaneously. The experimental results indicate that measurement repetition error of proposed scheme can be decreased to ±0.5 %. Compared to conventional area measurement schemes, this scheme has highly efficient and highly accurate.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2008年第2期308-313,共6页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.69775007No.60075010)
关键词 视觉检测 图像测量 面积计算 短程线主动轮廓线 visual detection image measurement area computation geodesic active contour
  • 相关文献

参考文献13

二级参考文献37

共引文献113

同被引文献19

  • 1佟庆彬,丁振良,董玉冰,袁峰.基于图像的小尺寸零件圆参数亚像素定位算法[J].吉林大学学报(工学版),2009,39(1):154-159. 被引量:3
  • 2金声琅,殷涌光.应用MATLAB图像处理技术评判原料乳细菌数的研究[J].乳业科学与技术,2005,27(2):61-64. 被引量:6
  • 3Texas Instruments Incorporated. SEED-DVS6446用户指南[S].2008.
  • 4Texas Instruments Incorporated. Codec engine server integTator's guide[ S ]. 2006.
  • 5Texas Instruments Incorporated. Codec engine algorithm creator user's guide[ S]. 2006.
  • 6Texas Instruments Incorporated. Codec engine application developer user's guide[ S]. 2006.
  • 7Chan T, Vese L. Active Contours Without Edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
  • 8Zhang Hongmei, Bian Zhengzhong, Guo Youmin, et al. An Efficient Multiscale Approach to Level Set Evolution[C]// Proceedings of EMBS’03. Cancun, Mexico: [s. n.], 2003: 694-697.
  • 9陈兵旗.Visual C++实用图像处理[M].北京:清华大学出版社,2004.13-60.
  • 10周小舟,张加万,孙济洲.基于互信息和Chan-Vese模型的图像分割方法[J].计算机工程,2007,33(22):220-222. 被引量:7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部