期刊文献+

密肋复合墙体有效面内剪切模量的计算 被引量:2

RESEARCH ON AN EQUIVALENT MATRIX-INCLUSION COMPOSITE SLAB MODEL FOR A MULTI-RIBBED SLAB WALL
下载PDF
导出
摘要 密肋复合墙体结构是近年来发展的一种建筑结构新体系,密肋复合墙体是密肋复合墙体结构的主要受力构件。采用复合材料方法对密肋复合墙体的弹性阶段进行力学分析,以有效自洽法(ESCM)和相互作用直推法(IDD)为基础,把墙体视为基体-夹杂型复合材料弹性板,推导密肋复合墙体有效面内剪切模量的计算公式,结合试验资料对计算模型进行验证。结果表明,建立的基体-夹杂型复合材料等效弹性板模型是可行的。 Multi-ribbed slab structure (MRSS) is a new structural system developed in recent years, with multi-ribbed slab wall as its main bearing member. Analysis of the multi-ribbed slab wall on the elastic stage by means of composite material theory is made. Based on the ESCM and the IDD methods, an equivalent elastic slab model adapted to multi-ribbed slab wall is established, and in-plane effective shear moduli of orthotropic equivalent elastic slab is deduced. By testing the model and analyzing experimental data, the composite material equivalent elastic slab model is feasible.
出处 《工业建筑》 CSCD 北大核心 2008年第1期24-27,35,共5页 Industrial Construction
基金 国家自然科学基金资助项目(50578011) 中国博士后基金资助项目(2005038606) 教育部博士点专项基金资助项目(20050004013) 北京交通大学“十五”专项基金资助项目(2005ZS002) 陕西省教育厅自然科学基金资助项目(06JK256、06JK264) 陕西省自然科学基金资助项目(陕科[2004]68号)
关键词 密肋复合墙体 有效自洽法(ESCM) 相互作用直推法(IDD) 有效面内剪切模量 multi-ribbed slab wall ESCM method Interaction Direct Derivation method in-plane effective shear moduli
  • 相关文献

参考文献12

  • 1田英侠,陈平,姚谦峰,赵冬,黄炜.密肋复合墙板等效弹性常数计算方法研究[J].工业建筑,2003,33(1):10-12. 被引量:16
  • 2Huang Y, Hwang K C, Hu K X, et al. A Unified Energy Approach to a Class of Micromechanics Models for Composite Materials. Acta Mechanical Sinica, 1995, 11 ( 1 ) : 59 - 75.
  • 3Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Elastic Solids, Lecture Notes. Initiated at UCSD, 1993.
  • 4Budiansky Y. On the Elastic Moduli of Some Heterogeneous Material J. Mech. Phys. Solids, 1965, 13:223-7.
  • 5Hill R. A Self-Consistent Mechanics of Composite Materials. J. Mech. Phys. Solids, 1965, 13:213-222.
  • 6Norris A N. A Differential Scheme for the Effective Moduli of Composites. Mech. Mater 1985, 4: 1- 16.
  • 7Christensen R M, Lo K H. Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models J. Mech Phys. Solids, 1979, 27:315- 330.
  • 8Mori T, Tanaka K. Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions. Acta. Metall. 1973, 21:571 - 583.
  • 9Weng G J. Some Elastic Properties of Reinforced Solids with Special Reference to Isotropic Ones Containing Spherical Inclusions. Int. J. Eng. Sci. 1984, 22: 845- 856.
  • 10Benveniste Y. A New Approach to the Application of Moil-Tanaka's Theory in Composite Materials. Mech. Mater.. 1987, 6: 147- 157.

二级参考文献1

  • 1匡振邦 等.材料的力学行为[M].北京:高等教育出版社,1998..

共引文献15

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部