摘要
该文主要研究二阶次线性奇异三点边值问题的正解的存在性,利用上下解方法和比较定理给出了C[0,1]和C^1[0,1]正解存在的充分必要条件,其中的非线性项f(t,x)可以在x=0,t=0和t=1处奇异.
This paper investigates the existence of positive solutions for second-order singular sub-linear three-point boundary value problems. A necessary and sufficient condition for the existence of C[0, 1] as well as C^1[0, 1] positive solutions is given by constructing lower and upper solutions and with the comparison theorem. The nonlinearity f(t, x) may be singular at x, t=0 and/or t=1.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2008年第1期174-182,共9页
Acta Mathematica Scientia
基金
山东省重大科技专项基金(2005GG21006001)资助
关键词
奇异三点边值问题
正解
上下解
比较定理
Singular three-point boundary value problem
Positive solution
Lower and upper solutions
Comparison theorem.