期刊文献+

次线性奇异三点边值问题的正解 被引量:2

Positive Solutions of Some Singular Sub-linear Three-point Boundary Value Problems
下载PDF
导出
摘要 该文主要研究二阶次线性奇异三点边值问题的正解的存在性,利用上下解方法和比较定理给出了C[0,1]和C^1[0,1]正解存在的充分必要条件,其中的非线性项f(t,x)可以在x=0,t=0和t=1处奇异. This paper investigates the existence of positive solutions for second-order singular sub-linear three-point boundary value problems. A necessary and sufficient condition for the existence of C[0, 1] as well as C^1[0, 1] positive solutions is given by constructing lower and upper solutions and with the comparison theorem. The nonlinearity f(t, x) may be singular at x, t=0 and/or t=1.
作者 韦忠礼
出处 《数学物理学报(A辑)》 CSCD 北大核心 2008年第1期174-182,共9页 Acta Mathematica Scientia
基金 山东省重大科技专项基金(2005GG21006001)资助
关键词 奇异三点边值问题 正解 上下解 比较定理 Singular three-point boundary value problem Positive solution Lower and upper solutions Comparison theorem.
  • 相关文献

参考文献18

  • 1O'Regan D. Theory of Singular Boundary Value Problems. Singapore: World Scientific Press, 1994
  • 2Taliaferro S D. A nonlinear singular boundary value problem. Nonlinear Anal T M A 3, 1979. 897-904
  • 3Zhang Y. Positive solutions of singular sublinear Emden-Fowler boundary value problems. J Math Anal Appl, 1994, 185:215-222
  • 4Feng W, Webb J R L. Solvability of a m-point boundary value problems with nonlinear growth. J Math Anal Appl, 1997, 212:467-480
  • 5Feng W. On a m-point boundary value problem, Nonlinear Analysis Tma, 1997, 30(6): 5374-6369
  • 6Gupta C P. Solvability of a three-point boundary value problems for a second order ordinary differential equation. J Math Anal Appl, 1992, 168:540-551
  • 7Gupta C P. A sharper condition for solvability of a three-point boundary value problem. J Math Anal Appl, 1997, 205:586-597
  • 8Gupta C P. A generalized multi-point boundary value problem for second order ordinary differential equations. Applied Mathematics and Computation, 1998, 89:133-146
  • 9Ruyun Ma. Positive solutions of a nonlinear three-point boundary value problem. Electronic Journal of Differential Equations, 1999, 34:1-8
  • 10Ruyun Ma. Positive solutions for second order three-point boundary value problem. Applied Mathematics Letters, 2001, 14:1-5

同被引文献11

  • 1赵增勤.一类非线性奇异微分方程正解的存在性定理[J].数学物理学报(A辑),2005,25(3):393-403. 被引量:15
  • 2Guo D,Lakshmikantham V.Nonlinear Peoblems in Abstract Cones.New York:Academic Press,1988.
  • 3Avery R I.A generalization of the Leggett-Williams fixed point theorem.Math Sci Res Hot-Line,1999,3:9-14.
  • 4Leggett R W,Williams L R.Multiple positive fixed points of nonlinear operators on ordered Banach spaces.Indiana Univ Math J,1979,28:673-688.
  • 5Avery R I,Henderson J.Three symmetric positive solutions for a second order boundary value problem.Appl Math Lett,2000,13:1-7.
  • 6Henderson J,Thompson H B.Multiple symmetric positive solutions for a second order boundary value problem.Proc Amer Math Soc,2000,128:2373-2379.
  • 7Davis J M,ELoe P W,Henderson J.Triple positive solutions and dependence on higher order derivatives.J Math Anal Appl,1999,237:710-720.
  • 8Davis J M,Henderson J,Wong P J R.General Lidstone problems:multiplicity and symmetry of solutions.J Math Anal Appl,2000,251:527-548.
  • 9Zhang B,Liu X.Existence of multiple symmetric positive solutions of higher order Lidstone problems.J Math Anal Appl,2003,284:672-689.
  • 10王艳玲,史国良.四阶超线性奇异p-Laplacian边值问题的正解[J].数学物理学报(A辑),2009,29(2):344-352. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部