拟共形映射和HAUSDORFF维数
Quasiconformal Mappings and Hausdorff Dimension
摘要
讨论了标准Cantor集F的Hausdorff维数dim_H(F)在拟共形映射f下的变化,给出了dim_H(f(F))的准确上下界.
The authors discuss change of Hausdorff dimension dimH(F) for standard Cantor set F under quasiconformal mapping f, and obtain sharp superior and inferior bounds of dimH(f(F) ).
出处
《数学物理学报(A辑)》
CSCD
北大核心
2008年第1期183-187,共5页
Acta Mathematica Scientia
基金
国家自然科学基金(10471039)
教育部“新世纪优秀人才支持计划”(NCET-04-0783)
浙江省自然科学基金(M103087)
湖南省教育厅项目(07C639)资助
参考文献13
-
1Falconer K J. The Geometry of Fractal Sets. Cambridge: Cambridge University, 1986
-
2Bishop C J. Quasiconformal mappings which increase dimension. Ann Acad Sci Fenn Math, 1999, 24(2): 397-407
-
3Astala K. Distortion of area and dimension under quasiconformal mappings in the plane. Proc Nat Acad Sci, 1993, 90(24): 11958-11959
-
4Zakeri S. David maps and Hausdorff dimension. Ann Acad Sci Fenn Math, 2004, 29(1): 121-138
-
5Gehring F W. Haudorff dimension and quasiconformal mappings. J London Math Soc, 1973, 6(2): 504-512
-
6Falconer K J, Marsh D T. Classification of quasi-circles by Hausdorff dimension. Nonlinearity, 1989, 2(3): 489-493
-
7Ahlfors L V. On quasiconformal mappings. J Analyse Math, 1954, 3:1-58
-
8Ahlfors L V. Lectures on Quasiconformal Mappings. New York: Van Nostrand, 1966
-
9Balogh Z M, Tyson J T. Haudorff dimensions of self-similar and self-affine fractals in the Heisenberg group. Proc London Math Soc, 2005, 1(3): 153-183
-
10Balogh Z M. Haudorff dimension distribution of Quasiconformal Mappings on the Heisenberg group. J Anal Math, 2001, 83:289-312