期刊文献+

球磨处理对LiAlH_4放氢动力学的影响 被引量:4

Ball Mill Effect on the Dehydrogenation Kinetics of LiAlH_4
下载PDF
导出
摘要 采用高能球磨对配位氢化物LiAlH4进行纳米化,通过X射线衍射分析,压力、组分等温测试等手段,研究了球磨时间、球料比等球磨参量对LiAlH4的微观结构和等温放氢性能的影响,并在此基础上揭示了球磨对LiAlH4的储氢性能和机制的影响.实验结果表明:LiAlH4分解为Li3AlH6和Al的放氢阶段与材料的晶粒尺寸有着密切的关系,较小的晶粒尺寸能有效地改善样品的储氢动力学性能;球磨能使Li3AlH6分解为LiH和Al的放氢阶段的起始温度显著降低;在适当的球磨参数下,LiAlH4的放氢有可能按不同于目前普遍认同的放氢模式进行. The influence of ball milling parameters such as milling time, ball to powder ratio on the micro structure and dehydrogenation kinetics of complex hydride has been studied by X-ray diffraction and pressure-composition isotherms. Results show that the dehydrogenation kinetic of decomposition from LiAlH4 to Li3AlH6 and Al has a close relationship with the crystalline size of raw-material. Reducing crystalline size can remarkably improve the hydrogen storage properties of LiAlH4. Ball milling can significantly decrease the decomposition temperature of Li3AlH6. However, the decomposition of LiAlH4 may proceed via a mode that differs from the traditional view.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第2期256-260,共5页 Journal of Xi'an Jiaotong University
基金 教育部高等学校博士学科点专项科研基金资助项目(20040561001) 广东省自然科学基金资助项目(04300126)
关键词 储氢 配位氢化物 LiAlH4 等温放氢 hydrogen storage complex hydride LiAlH4 isothermal dehydrogenation
  • 相关文献

参考文献16

  • 1United States Department of Energy. A national vision of America's transition to a hydrogen economy [M]. Washington DC: United States Department of Energy, 2001.
  • 2BALEMA V P, PECHARSKY V K, DENNIS K W. Solid state phase transformations in LiAlH4 during high-energy ball-milling [J]. Journal of Alloys and Compounds, 2000, 313(1/2): 69-74.
  • 3CHEN J, KURIYAMA N, XU Q, et al. Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li2AlH6 [J]. Journal of Physical Chemistry: B, 2001, 105(45) : 11214-11220.
  • 4HAUBACK B C, BRINKS H W, FJELLVAG H. Accurate structure of LiAlH, studied by combined powder neutron and X-ray diffraction [J]. Journal of Alloys and Compounds, 2002, 346(1/2): 184-189.
  • 5VAJEESTON P, RAVINDRAN P, VIDYA R, et al. Huge-pressure-induced volume collapse in LiAlH4 and its implications to hydrogen storage [J]. Physical Review: B, 2003, 68(21): 212101.
  • 6BLANCHARD D, BRINKS H W, HAUBACK B C, et al. Desorption of LiA1H4 with Ti- and V-based additives [J]. Materials Science And Engineering B: Solid State Materials For Advanced Technology, 2004, 108 (1/2) : 54-59.
  • 7LOVVIK O M, OPALKA S M, BRINKS H W, et al. Crystal structure and thermodynamic stability of the lithium alanates LiAlH4 and Li3AlH6 [J]. Physical Review : B, 2004, 69(13): 134117.
  • 8ANDREASEN A, VEGGE T, PEDERSEN A S. Dehydrogenation kinetics of as-received and ball-milled LiAlH4 [J]. Journal of Solid State Chemistry, 2005,178(12): 3672-3678.
  • 9ANDREI C M, WALMSLEY J, BLANCHARD D, et al. Electron microscopy studies of lithium aluminium hydrides [J]. Journal of Alloys and Compounds, 2005, 395(1/2): 307-312.
  • 10EASTON D S, SCHNEIBEL J H, SPEAKMAN S A. Factors affecting hydrogen release from lithium alanate (LiAlH4) [J]. Journal of Alloys and Compounds, 2005, 398(1/2) :245-248.

同被引文献79

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部