期刊文献+

远程制备双原子纠缠态(英文) 被引量:4

Probabilistic Remote Preparation of Two-atom Entangled State
下载PDF
导出
摘要 提出一种远程制备双原子纠缠态的方案,该方案基于两个原子与单模腔场的同时非共振相互作用.由于双粒子纠缠态比三粒子纠缠态容易制备,方案用两对双原子纠缠态作为量子通道.Alice拥有的两个相同原子同时与一单模腔场非共振相互作用.Alice已知她要制备的纠缠态,她选择适当的相互作用时间、测量她所拥有的两个原子并通过经典通道通知Bob.Bob引入一个相同的辅助原子和一个单模腔场来实现方案.方案对腔场状态和腔损耗不敏感,基于当前的腔QED技术,方案能在实验上实现.该方案有望在量子信息过程中有重要的应用价值. A scheme for remote preparation of a two-atom entangled state is presented, which is based on the simultaneous nonresonant interaction of atoms with a single-mode cavity field. In view of the fact that two-particle entanglement is more easily generated than three-particle entanglement, the scheme prepares a two-atom entangled state via two pairs of two-atom entangled state as the quantum channel. Let two identical atoms Alice possesses interact with a single-mode cavity field simultaneously. Alice knows the state she wants to prepare. She selects a proper interaction time, measures the states of the atoms she possesses, and informs Bob of her measurement through a classical channel. Bob introduces an identical auxiliary atom and a singlemode cavity field in vacuum state to achieve the scheme. The scheme is insensitive to the cavity field states and cavity decay. The preparation can be achieved in a simple way. Based on current cavity quantum electrodynamics technique, the scheme can be realized experimentally.
出处 《光子学报》 EI CAS CSCD 北大核心 2008年第1期188-191,共4页 Acta Photonica Sinica
基金 the Science Foundation of EducationalCommittee of Fujian Province (JB06039)
关键词 量子信息 双原子纠缠态 远程态制备 非共振相互作用 Quantum information Two-atom entangled state Remote state preparation Nonresonant interaction
  • 相关文献

参考文献5

二级参考文献87

  • 1[1]Bennett C H, Brassard G, Crepeau C,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels.Phys Rev Lett,1993,70(13):1895~1899
  • 2[2]Bouwmeester D, Pan J W, Matter K,et al.Experimental quantum teleportation.Nature(London), 1997,390:575~579
  • 3[3]Murao M, Jonathan D, Plenio M B,et al. Quantum telecloning and multiparticle entanglement.Phys Rev(A),1999,59(1):156~161
  • 4[4]Grover L K. Quantum telecomputation.e-print quant-ph/9704012; Cirac J I, Ekert A, Huelga S F,et al. Distributed quantum computation over noisy channels.Phys Rev(A),1999,59(6):4249~4254
  • 5[5]Huelga S F, Vaccaro J A, Chefles A,et al.Quantum remote control: Teleportation of unitary operations.Phys Rev(A),2001,63(4):042303-1~4
  • 6[6]Fuchs C A. Nonorthogonal quantum states maximize classical information capacity.Phys Rev Lett,1997,79(6):1162~1165
  • 7[7]Sanders B C. Entangled coherent states.Phys Rev(A),1992,45(9):6811~6815
  • 8[8]Wang X. Bipartite maximally entangled nonorthogonal states.e-print quant-ph/0102011;Wang X,Sanders B C. Multipartite entangled coherent states.Phys Rev(A), 2002,65(1):012303-1~7
  • 9[9]van Enk S J,Hirota O. Entangled coherent states:Teleportation and decoherence.Phys Rev(A),2001,64(4):022313-1~8
  • 10[10]Wang X. Quantum teleportation of entangled coherent states.Phys Rev(A), 2001,64(2):022302-1~4

共引文献26

同被引文献19

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部