期刊文献+

利用PCA增强随机化隐私数据保护方法

USING PCA TO IMPROVE RANDOMIZATION SCHEME OF PPDM
下载PDF
导出
摘要 基于随机化的数据扰乱及重构技术是数据挖掘中的隐私保护(Privacy-Preserving Data Mining,PPDM)领域中最重要的方法之一。但是,随机化难以消除由于属性变量本身相关性引起的数据泄漏。介绍了一种利用主成分分析(Principal Component Anal-ysis,PCA)进行属性精简的增强随机化方法,降低了参与数据挖掘的属性数据间相关性,更好地保护了隐私数据。 Randomization, as one of the most important schemes in Privacy-Preserving Data Mining (PPDM) field, can't eliminate privacy breaches of datasets with high correlated attributes effectively. An improvement on randomization scheme is made through the Principal Component Analysis(PCA) to reduce the correlation between the attributes involved in data mining and preserve privacy of original data better.
作者 温晗 林怀忠
出处 《计算机应用与软件》 CSCD 北大核心 2008年第2期261-263,共3页 Computer Applications and Software
关键词 隐私保护的数据挖掘(PPDM) 随机化方法 主成分分析(PCA) 信息遗失率 Privacy-preserving data mining (PPDM) Randomization Principal component analysis (PCA) Ratio of information loss
  • 相关文献

参考文献10

  • 1HAN JW,KAMBER M.Data mining concepts and techniques[M].北京:机械工业出版社,2001.158-161.
  • 2Agrawal R, Sfikant R. Privacy-preserving data mining[ A ]. Proceedings of ACM SIGMOD on Management of Data[ C]. Dallas,TX USA:ACM SIGMOD ,2000,439 - 450.
  • 3Kargupta H,Datta S,Wang Q,et al. On the privacy-preserving properties of random data perturbation techniques [ A ]. IEEE International Conference on Data Mining[ C ]. Melbourne, Florida USA: IEEE,2003 , 99 - 106.
  • 4Huang Z, Du W, Biao Chen. Deriving Private Information from Randomized Data[ A ]. SIGMOD 2005 [ C ]. Baltimore, Maryland, USA: ACM SIGMOD,2005,37 - 48.
  • 5Du W,Zhan Z. Using randomized response techniques Ibr privacy-preserving data mining[A]. Proceedings of The 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining [ C ]. Washington, DC, USA : ACM SIGMOD ,2003,505 - 510.
  • 6Lindell Y, Pinkas B. Privacy preserving data mining [ A ]. Advances in Cryptology-Crypto 2000 [ C ]. Santa Barbara, CA: Springer-Verlag, 2000,36 - 54.
  • 7Pinkas B. Cryptographic techniques for privacy-preserving data mining [ J ]. SIGKDD Explorations,2002,4 (2) : 12 - 19.
  • 8Du W,Zhan Z. Building decision tree classifier on private data[ A]. Workshop on Privacy, Security, and Data Mining at The 2002 IEEE International Conference on Data Mining (ICDM'02)[ C], Maebashi City, Japan : IEEE,2002 , 1 - 8.
  • 9Evfimevski A, Srikant R, Agruwal R, et al. Privacy preserving mining of association rules [ A ]. Proceedings of the ACM SIKDD Conference [ C ], Edmonton, Canada: ACM SIKDD,2002, 217 - 228.
  • 10Jolliffe I. Principal component analysis [ M ]. New York : Spring - Vetlag, 1986.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部