期刊文献+

基于正交试验的免疫遗传算法在调度问题中的应用 被引量:4

Immune Genetic Algorithm Based on Orthogonal Experiment for Scheduling Problems
下载PDF
导出
摘要 提出了优先权值编码与三个体交叉算子相结合的免疫遗传算法.该编码方法不仅满足车间作业调度问题(Job-shop Scheduling Problem,JSP)中工序优先约束的要求,而且可以有效避免非可行解的产生.三个体交叉的交叉算子在保证后代群体多样性的前提下,在很大程度上继承了父代的优良特性.基于正交试验的免疫算子丰富了抗体群的多样性,从而大大提高了算法克服局部收敛的能力.在算法参数的选取上,采用正交试验法来确定参数值,加快了收敛速度.对车间作业调度的几个典型问题进行了仿真,并与其它算法进行了比较.实验结果表明了该算法的有效性,仿真结果令人满意. An immune genetic algorithm is proposed based on the combination of a preference weight coding and a three-individual-crossover. This coding method not only meets the demand of operational preferential constraint in Job-shop Scheduling Problem (JSP) but also avoids unfeasible solutions effectively. The crossover operators of threeindividual-crossover inherit to a great degree the excellent characteristics from their parents while guaranteeing The diversity of their deseendauts. The immune operator based on orthogonal experiment diversifies the antibodies, which greatly improves the algorithm's abilily to overcome partial convergence. This paper uses orthogonal experiment method to confirm the parameters, which enhances the convergence speed. Simulations are made on several henchmark problems in JSP, and comparisons are made between the presented algorithm and other algorithms. With satisfactory results, the experiments prove that the proposed algorithm is valid for JSP problems.
出处 《信息与控制》 CSCD 北大核心 2008年第1期46-51,共6页 Information and Control
基金 国家自然科学基金资助项目(70671057) 国家自然科学基金资助项目(70771052) 教育部博士点基金资助项目(20051065002)
关键词 遗传算法 车间作业调度问题 三个体交叉 免疫 正交试验法 genetic algorithm job-shop scheduling problem three-individual-crossover: immunity orthogonal experiment method
  • 相关文献

参考文献8

二级参考文献43

  • 1罗菲,何明一.基于免疫遗传算法的多层前向神经网络设计[J].计算机应用,2005,25(7):1661-1662. 被引量:19
  • 2席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13(6):697-708. 被引量:347
  • 3诸静.模糊控制原理及应用[M].北京:机械工业出版社,1995,5..
  • 4Hoffmann F. Evolutionary algorithms for fuzzy control system design[J]. Proceedings tithe IEEE. 2001 ,(89) :1318 -1333.
  • 5Lim M H, Rahardja S, Gwee B H. A GA paradigm for learning fuzzy roles [J]. Fuzzy Sets and Systems,1996,(82) :177 -186.
  • 6HOLLAND J H. Adaptation in natural and artificial systems[M].Ann Arbo, MI,USA:The University of Michigan Press,1975.
  • 7DAVIS L .Job shop scheduling with genetic algorithms[A]. Proceedings of the 1st International conference on Genetic Algorithm[C].Pittsburgh,PA,USA:Camegie Mellon University,1985.13-140.
  • 8MOON I, LEE J. Genetic algorithm application to the job shop scheduling problem with alternative routings[EB/OL].http://logistics.ie.pusan.ac.kr/bkz1/pdf/jelee.pdf,2000.
  • 9GAREY E L, JOHNSON D S,SETHI R.The complexity of flowshop and job-shop scheduling[J]. Mathematics of Operations Research,1976,1(2):117-129.
  • 10ORVOSH D,DAVIS L. Using a genetic algorithm to optimize problems with feasibility constraints[A].Proceedings of the First IEEE Conference on Evolutionary Computation[C]. New York,WA,USA:IEEE Service Center. 1994. 548-553.

共引文献80

同被引文献79

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部