期刊文献+

基于混沌遗传算法的铜闪速熔炼过程操作模式智能优化系统 被引量:3

Intelligent Operation Pattern Optimization System in Copper Flash Smelting Process Based on Chaotic Genetic Algorithm
下载PDF
导出
摘要 提出了一种铜闪速熔炼操作模式智能优化系统.该系统首先采用动态T-S递归模糊神经网络(Dynamic T-S Recurrent Fuzzy Neural Network,DTRFNN)对工艺参数进行软测量,再采用模式分解的方法对海量数据进行分解,最后对模式子集采用基于神经网络和混沌遗传算法的铜闪速熔炼操作模式智能优化方法进行优化.将该控制系统应用到铜闪速熔炼中,提高了铜闪速炉的生产效率. An intelligent operation pattern optimization system in copper flash smelting process is put forward. Firstly, in this system, a DTRFNN (Dynamic T-S Recurrent Fuzzy Neural Network) is adopted for the technologic p.arameters' soft sensing. Secondly, the method of pattern decomposition is adopted to decompose the mass data. Finally, intelligent operation pattern optimization based on neural networks and chaotic genetic algorithm is adopted to optimize the operation pattern sub sets. This control system is applied in copper flash smelting. The production efficiency of copper flash smeher is improved.
出处 《信息与控制》 CSCD 北大核心 2008年第1期87-92,共6页 Information and Control
基金 国家自然科学基金重点资助项目(60634020) 国家973计划资助项目(2002CB312200) 湖南省自然科学基金资助项目(06FD007) 国家发改委专项资金资助项目(2004-1113-170) 中国博士后科学基金资助项目(20060400885)
关键词 动态T—S递归模糊神经网络 神经网络 模式分解 模式优化 混沌遗传算法 铜闪速熔炼 dynamic T-S recurrent fuzzy neural network (DTRFNN) neural network pattern decomposition pattern optimization chaotic genetic algorithm copper flash smelting
  • 相关文献

参考文献11

  • 1Nagamori M, Mackey P J. Thermodynamics of copper matte converting: Part Ⅰ. Fundamentals of the Noranda process [ J]. Metallurgical and Materials Transactions B, 1978, 9 (3) : 255 - 265.
  • 2Goto S. Equilibrium calculations between matte, slag and gaseous phases in copper smelting [ A ]. Proceedings of the Copper Metallurgy - Practice and Theory [ C]. London: Institute of Mining and Metallurgy, 1975. 23 - 34.
  • 3Kyllo A K, Richards G G, Marcuson S W. A mathematical model of the nickel converter: Part Ⅱ. Application and analysis of converter operation [J]. Metallurgical and Materials Transactions B, 1992, 23(5): 573-582.
  • 4刘金琨,王树青,张建明.高炉实时控制专家系统存在的问题及其解决方法[J].浙江大学学报(自然科学版),2000,34(6):613-618. 被引量:3
  • 5Lin C T, Lee C S G. Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems [ J ]. IEEE Transactions on Fuzzy Systems, 1994, 2 ( 1 ) : 46 - 63.
  • 6王炜,蒋春曦,张军,周胜奎,汪成民.BP神经网络在地震综合预报中的应用[J].地震,1999,19(2):118-128. 被引量:27
  • 7王京慧,李宏光,等.递归复合型模糊神经网络结构研究[J].信息与控制,2003,32(2):181-184. 被引量:5
  • 8李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615. 被引量:535
  • 9姚俊峰,梅炽,彭小奇,胡志坤,胡军.混沌遗传算法及其应用[J].系统工程,2001,19(1):70-74. 被引量:60
  • 10Qi R B, Qian F, Li S J, et al. Chaos-genetic algorithm for multiobjective optimization [ A]. Proceedings of the World Congress on Intelligent Control and Automation [ C ]. Piscataway, NJ, USA: IEEE, 2006. 1563 - 1566.

二级参考文献16

共引文献615

同被引文献28

  • 1严爱军,柴天佑,岳恒.竖炉焙烧过程的多变量智能优化控制[J].自动化学报,2006,32(4):636-640. 被引量:20
  • 2汪金良,卢宏,曾青云,张传福.基于遗传算法的铜闪速熔炼过程控制优化[J].中国有色金属学报,2007,17(1):156-160. 被引量:14
  • 3Zhang J. Batch-to-Batch Optimal Control of a Batch Poly Mer- ization Process Based on Stacked Neural Network Models J. Chemical Engineering Science,2008,63(5) :1273.
  • 4崔桂梅,刘敏.基于模糊模型的高炉硅含量预测研究[D].包头:内蒙古科技大学,2012.
  • 5Lai Y C, Ye N. Recent Developments in Chaotic Time Series Analysis [J].International Journal of Bifurcation and Chaos, 2003,13 (6) : 1383.
  • 6Davenport W G,Partelpoeg E H. Flash Smelting Analy- sis, Control and Optimization[M]. New York: Perga- mon Press, 1987.
  • 7Peng Xiao-bo,Gui Wei-hua,Li Yong-gang, et al. Opera- tional pattern optimization for copper flash smelting process based on pattern decomposition of fuzzy neural networks [C]//IEEE International Conference on Con- trol and Automation. Guangzhou, China, 2007: 2328- 2333.
  • 8Gui Wei-hua,Wang Ling-yun,Yang Chun-hua,et al. In- telligent prediction model of matter grade in copper flash smelting process[J]. Transaction of Nonferrous Metals Society of China, 2007,17(5) : 1075-1081.
  • 9QI Xiao-ni, LIU Zhen-yan,LI Dan-dan. Prediction of the performance of a shower cooling tower based on projec- tion pursuit regression[J]. Applied Thermal Engineer- ing, 2008,28(8/9): 1031-1038.
  • 10Wan Wei-han,Wan Bai-wu, Yang Jin-yi. Neural network modeling and steady-state optimizing control of nickel flash furnace in smelting plant[C]//Proc of 14th IFAC. Beijing: Chinese Association of Automation, 1999: 415- 420.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部