摘要
提出了一种铜闪速熔炼操作模式智能优化系统.该系统首先采用动态T-S递归模糊神经网络(Dynamic T-S Recurrent Fuzzy Neural Network,DTRFNN)对工艺参数进行软测量,再采用模式分解的方法对海量数据进行分解,最后对模式子集采用基于神经网络和混沌遗传算法的铜闪速熔炼操作模式智能优化方法进行优化.将该控制系统应用到铜闪速熔炼中,提高了铜闪速炉的生产效率.
An intelligent operation pattern optimization system in copper flash smelting process is put forward. Firstly, in this system, a DTRFNN (Dynamic T-S Recurrent Fuzzy Neural Network) is adopted for the technologic p.arameters' soft sensing. Secondly, the method of pattern decomposition is adopted to decompose the mass data. Finally, intelligent operation pattern optimization based on neural networks and chaotic genetic algorithm is adopted to optimize the operation pattern sub sets. This control system is applied in copper flash smelting. The production efficiency of copper flash smeher is improved.
出处
《信息与控制》
CSCD
北大核心
2008年第1期87-92,共6页
Information and Control
基金
国家自然科学基金重点资助项目(60634020)
国家973计划资助项目(2002CB312200)
湖南省自然科学基金资助项目(06FD007)
国家发改委专项资金资助项目(2004-1113-170)
中国博士后科学基金资助项目(20060400885)
关键词
动态T—S递归模糊神经网络
神经网络
模式分解
模式优化
混沌遗传算法
铜闪速熔炼
dynamic T-S recurrent fuzzy neural network (DTRFNN)
neural network
pattern decomposition
pattern optimization
chaotic genetic algorithm
copper flash smelting