期刊文献+

面向钻削路径规划问题的微粒群优化算法研究 被引量:1

Particle Swarm Optimization Algorithm for Drilling Path Planning Problem
下载PDF
导出
摘要 提出一种基于微粒群优化(PSO)算法的方法,用于解决离散空间的群孔钻削路径规划问题.为了满足钻削路径规划问题中整数编码的需要,建立了算子中元素的二元转换方法和操作方式,对算法的操作算子进行改进.针对基本微粒群算法全局收敛率较低的问题,本文在算法数学模型的基础上,引入了重新生成"停止进化微粒"的方式对算法加以改进.实验表明,改进的算法全局收敛率较基本算法提高3倍多;新的算法具有实现简单、收敛速度快、能够实现全局收敛的优点.实际应用中,采用新的PSO优化算法对钻削路径优化后,可以节省17.9%的机床工作台移动时间. Based on particle swarm optimization (PSO) algorithm, an approach is presented to solve the drilling path planning problem in discrete space. In order to meet the needs of integer coding in drilling path planning, a duality conversion method and an operating mode for the operator elements are established to improve the operator of the algorithm. As for the problem of low global convergence rate in standard PSO, a method based on mathematical model is introduced to regenerate the stop evolution particles and to improve the algorithm. Experiment indicates that the global convergence rate of the improved PSO is increased more than 3 times over that of the standard PSO, and that the improved algorithm has the characteristics of easy realization, fast convergence speed and better global convergence capability. In practical applications, the new PSO is used to optimize the drilling path, and the time spent on moving the worktable is saved by 17.9%.
作者 朱光宇
出处 《信息与控制》 CSCD 北大核心 2008年第1期103-107,112,共6页 Information and Control
基金 福州大学科技发展基金资助项目(2006-XQ-15) 福建省青年人才基金资助项目(2006F3074)
关键词 微粒群优化(PSO)算法 路径规划 钻削 particle swarm optimization (PSO) algorithm path planning drilling
  • 相关文献

参考文献8

  • 1Kennedy J, Eberhart R C. Particle swarm optimization [ A]. Proceedings of the IEEE International Conference on Neural Networks [ C]. Piscataway, NJ, USA: IEEE, 1995. 1942 - 1948.
  • 2Van den Bergh F. An Analysis of Particle Swarm Optimizers [ D ]. Pretoria, South Africa : University of Pretoria, 2002.
  • 3Solis F J, Wets R J B. Minimization by random search techniques [J]. Mathematics of Operations Research, 1981, 6(1): 19-30.
  • 4曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 5周鲲,邵华.基于Hopfield算法的孔群加工路径规划[J].模具技术,2003(1):48-50. 被引量:14
  • 6肖人彬,陶振武.孔群加工路径规划问题的进化求解[J].计算机集成制造系统,2005,11(5):682-689. 被引量:23
  • 7佟鑫,陈言秋,王君.皮革裁切加工算法[J].计算机辅助设计与图形学学报,2005,17(7):1642-1646. 被引量:8
  • 8Anand S, McCord C, Sharma R. An integrated machine vision based system for solving the nonconvex cutting stock problem using genetic algorithms [ J]. Journal of Manufacturing Systems, 1999, 18(6):396-415.

二级参考文献16

  • 1张乃尧 等.神经网络与模糊控制[M].北京:清华大学出版社,1985..
  • 2P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 3E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 4M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 5F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 6F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 7王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)
  • 8J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975
  • 9艾兴 肖诗纲.切削用量手册[M].北京:机械工业出版社,1994..
  • 10Heistermann J,Lengauer T. The nesting problem in the leather manufacturing industry [J]. Annals of Operations Research,1995, 57: 147~ 173

共引文献193

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部