期刊文献+

基于BP神经网络的GD-1高压共轨系统的建模研究 被引量:1

Study on BP Neural Networks Modeling for GD-1 High Pressure Common Rail System
下载PDF
导出
摘要 基于GD-1高压共轨燃油喷射系统,运用BP神经网络理论对GD-1系统高压油泵及共轨管进行建模,在Matlab平台上利用实际测得的数据对所建的神经模型进行训练,利用Simulink工具将训练好的高压油泵及共轨管模型与GD-1控制策略连接在一起进行闭环仿真,仿真结果表明设计的神经网络能很好地模拟共轨管内实际油压变化。 Based on the GD - 1 high pressure common rail fuel injection system, Model was built for GD - 1 High Pressure Fuel Pump and Common Rail in BP Neural Networks Types. The BP neural networks model is trained with practical data gained in experiments. Finally in the Simulink platform we connected the well - trained BP Neural Networks with GD - 1 fuel injection control strategy for closed loop simulation. The simulation result showed that the well - trained Neural Networks Model really simulates the characteristic of practical fuel pressure changes in common rail.
出处 《小型内燃机与摩托车》 CAS 北大核心 2008年第1期14-17,共4页 Small Internal Combustion Engine and Motorcycle
关键词 GD-1 高压共轨 神经网络 建模 闭环仿真 GD - 1, High pressure common rail, BP Neural Networks, Modeling, Closed loop simulation
  • 相关文献

参考文献3

二级参考文献2

  • 1[1]Masahiko Miyaki, Hideya Fujisawa. Development of New Electronically Controlled Fuel Injection System ECD-U2 for Diesel Engines[C]. SAE 910252,1991.
  • 2[2]Bosch Technical Instruction. Diesel Accumulator Fuel-injection System Common Rail[C]. Bosch Company,1999.

共引文献31

同被引文献12

  • 1颜松,魏建勤.高压共轨系统轨压模拟计算[J].液压与气动,2005,29(2):3-5. 被引量:5
  • 2曲晓慧,乔新勇,陈玫,安钢.基于灰色关联分析的柴油机状况评估[J].兵工学报,2005,26(4):557-559. 被引量:13
  • 3冯宗磊,杨福源,任亮,李进,欧阳明高.发动机的组合神经网络建模[J].清华大学学报(自然科学版),2005,45(11):1522-1525. 被引量:8
  • 4AHLIN K. Modeling of pressure waves in the common rail diesel injection system [ D]. LinkOping, Sweden : Linkoping University, Dept of Electrical Engineering, 2000.
  • 5GAUTHIER C, SENAME O, DUGARD L, et al. Modeling of a diesel engine common rail injection system [C]//Proeeed- ings of IFAC2005. Trondheim, Norwayz NTNU, 2005.
  • 6KULKARNI A, JAYARAMAN V K, KULKARNI B D. Support vector classification with parameter tuning assisted by agent--based technique[J]. Engineering, 2004, 8 (3) :311 -- 319.
  • 7NIKNAM T, FARSANI E A. A hybrid self-adaptive particle swarm optimization and modified shuffled frog leaping algo- rithm for distribution feeder reconfiguration [J]. Engineering Applications of Artificial Intelligence, 2010, 23 (8) : 1340 -- 1349.
  • 8SUYKENS J A K, BRABANTER J D, LUKAS L, et al. Weighted least squares support vector machiness robustness and sparse approximation [J]. Neurocomputing, 2002,48 ( 1/ 4):85--105.
  • 9KENNEDY J, EBERHART R C. Particle swarm optimization [C]//Proceedings of IEEE International Conference on Neural Networks. New York: IEEE, 1995:1942--1984.
  • 10LI Xiu-fen, FU Hong-jie, ZHANG Chang-heng. A self-adap- tive particle swarm optimization algorithm. [C]// Proceedings of IEEE International Conference on Computer Science and Software Engineering. New York: IEEE,2008; 186-- 189.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部