期刊文献+

SPH方法中常数一致性核函数的建立及公式化 被引量:3

Constant consistency kernel function and its formulation
下载PDF
导出
摘要 施加边界条件的不足是SPH方法的一个棘手问题,因为在结构边界外没有颗粒的存在,使得在边界处核函数的单位特性不能得到满足。施加"伪"颗粒是目前通用的一种方法,但是对于不规则结构和复杂几何边界,确定这些"伪"颗粒非常困难。本文讨论通过使用满足常数一致性的核函数来改善边界的不足。文章首先通过三种方法推导了满足常数一致性条件的核函数及其函数梯度的表达式,发现了两个不同分母式的表达,分析了满足常数一致性的修正核函数的数学特性。开展了二维和三维的算例比较,结果发现使用修正的核函数对边界条件有明显改善,对计算精度和稳定性也有显著提高。 Boundary conditions have been a sore point in the Smoothing Particle Hydrodynamics (SPH) method. The well-known problem originates from the kernel summation deficiency near the boundary, because there is no contributions of particles outside the boundary. Applying ghost particles or virtual particles is a commonly used approach. However, for an irregular structure or a complicated geometry, it would be difficult to determine these ghosts or virtual particles. In this paper we have discussed the application of a corrected constant consistency (or completeness) of kernel function to deal with the boundary deficiency. First of all, the corrected kernel functions with constant consistency (or completeness) are derived from three different corrective approaches, and their derivatives are also derived. The mathematical features and the error analysis of the corrected kernel functions are presented through the comparison with the traditional kernel function. Tests are carried out for both 2D and 3D case of a tension specimen and an impact example. It should be noted that the influences of the denominator differences in the derived formulations are analyzed and a few remarks are given. The improvement of the corrected constant consistency (or completeness) of kernel function is obvious near the boundary as we expect. In addition, the numerical accuracy and stability are improved as well.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2008年第1期48-53,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10577016)资助项目
关键词 光滑粒子流体动力学方法(SPH) 核函数 常数一致性 常数完备性 公式化 SPH kernel function corrected constant consistency corrected constant completeness formulation
  • 相关文献

参考文献13

  • 1RANDLES P W,LIBERSKY L D. Smoothed Particle Hydrodynamics: Some recent improvements and application[J]. Comput Meth Appl Mech Eng, 1996, 139:375-408.
  • 2LIU G R, LIU M B. Smoothed Particle Hydrodynamics - a mesh free particle method[M]. World Scientific Publishing Co Pte Ltd,2003.
  • 3SWEGLE J W, ATTAWAY S W, HEINSTEIN M W,et al. An analysis of smoothed particle hydrodynamics[R]. SAND93-2513,1994.
  • 4CHEN J K,BERAUN J E. A generalized smoothed particle hydrodynamics methodfor nonlinear dynamic problem[J]. Comput Meth Appl Mech Eng, 2000, 190:225-239.
  • 5CHEN J K,BERAUN J E,CARNEY T C. A corrective smoothed particle method for boundary value problems in heat conduction [J]. Int J Num Meth Eng, 1999,46 : 231-252.
  • 6CHEN J K,BERAUN J E,JIH C J. Completeness of corrective smoothed particle method for linear ealstodynamies[J]. Computational Mechanics, 1999, 24: 273-285.
  • 7BELYTSCHKO T, KRONGAUZ Y, ORGAN D, et al. Meshless methods: an overview and recent developments[J]. Comput Meth Appl Mech Eng, 1996, 139 : 3-47.
  • 8LIU W K,JUN S,LI J ,et al. Reproducing kernel particle methods for structure dynamics [J]. Int J Num Meth Eng,1995,35:1655-1679.
  • 9LIU W K,JUN S,ZHANG Y. Reproducing kernel particle methods[J]. Int J Num Meth Fluids, 1995,20: 1081-1106.
  • 10DILTS G A. Moving-least-squares-particle hydrodynamics-Ⅰ, consistency and stability [J]. Int J Num Meth Eng, 1999,44: 1115-1155.

共引文献37

同被引文献27

  • 1王学明,周进雄,张智谦,张陵.形状设计灵敏度分析的改进的再生核质点法[J].计算力学学报,2005,22(4):420-424. 被引量:3
  • 2展全伟,郭伟国,李玉龙,马君峰.飞机加强蒙皮在12.7mm弹丸撞击下的变形与破坏[J].爆炸与冲击,2006,26(3):228-233. 被引量:21
  • 3Gingold R A, Monaghan J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars[J]. Monthly Notices Royal Astronomical Society, 1977,181 : 375-389.
  • 4Lucy L B. A numerical approach to the testing of fusion process[J]. Astronomical Journal, 1977,88:1013-1024.
  • 5Mehra V, Chaturvedi S. High velocity impact of metal sphere on thin metallic plates: A comparative smooth particle hydrodynamics study[J]. Journal of Computational Physics, 2006,212 : 318-337.
  • 6Randles P W, Liberskyb L D. Smoothed particle hydrodynamics: Some recent improvements and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996,139,375-408.
  • 7Dyka C T, Ingel R P. An approach for tension instability in smoothed particle hydrodynamics[J]. Computers and Structures, 1995,57 (4) : 573-580.
  • 8Shintatea K, Sekine H. Numerical simulation of hypervelocity impacts of a projectile on laminated composite plate targets by means of improved SPH method[J]. Composites: A, 2004,35(6) :683-692.
  • 9XU Fei, CHEN Jian-she, HUANG Qi-qing. The study of numerical stability in the SPH method[J]. Advanced Materials Research, 2008,33-37 : 839-844.
  • 10韩旭,杨刚,强洪夫.光滑粒子流体动力学--一种元网格粒子法[M].长沙:湖南大学出版社,2005:119-121.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部