期刊文献+

配点型广义节点无网格法的基本原理及其应用 被引量:3

Fundamental and application of generalized-node mesh-free collocation method
下载PDF
导出
摘要 借鉴流形方法思想,引入广义节点的概念,对传统的无网格法进行了改进,建立了可具有任意高阶多项式插值函数的广义节点无网格方法。同时采用径向插值函数构造具有插值特性的逼近函数;采用配点法建立系统的离散方程。在阐述了这种方法基本原理的同时,针对线弹性力学问题给出了这种方法的数值计算列式。与传统无网格方法相比,这种方法更具有一般性;同时由于采用了配点法而不需要背景积分网格,所以可以认为这种方法是某种真正意义上的无网格法。当选取0阶广义节点位移插值函数时便可得到传统的无网格法;在不增加支持域内节点数目的条件下,通过选取高阶广义节点位移插值函数可以提高计算精度。最后通过算例分析,对0阶、1阶及2阶广义节点无网格法与现有的有关解答进行了对比,论证了其合理性。 In this paper, the concept of generalized node in manifold method is incorporated together with the mesh-free method to establish the interpolation functions with polynomials of arbitrary order. Based on the generalized-node interpolation functions, the generalized-node mesh-free method is developed to improve the conventional mesh-free method. At the same time, the radial basis function is used to construct the approximation functions with the feature of interpolation and the collocation method is employed to develop the discrete formulation of governing partial differential equations of the system. Therefore, the radial basis function (RBF) is applied to a direct collocation procedure and the generalized node is embedded in the RBF approximation. Then the mathematical formulation of the proposed method is developed with numerical implementation. The proposed generalized-node collocation meshfree method is a truly mesh-free method which combines the generalized node in manifold method with point collocation discretization of the governing partial differential equations. When the zero-order displacement interpolation function of the generalized node is chosen, the proposed method will be reduced to the conventional mesh-free point collocation method. In order to improve the accuracy with less supporting nodes, a higher-order displacement interpolation function is required. As numerical examples, a cantilever beam under end shear and an infinite plate with a hole subjected to uniform tensile load are respectively analyzed by the proposed method. It is shown that the numerical results computed by the proposed method can well agree with the solutions obtained by the theory of elasticity.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2008年第1期59-64,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金资助(10172022) 教育部跨世纪优秀人才培养计划研究基金资助(教技函[1998]2号)资助项目
关键词 无网格法 径向插值函数 广义节点无网格法 mesh-free method radial interpolation function generalized-node-based mesh-free method
  • 相关文献

参考文献13

  • 1GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and applications to nonspherical stars[J]. Monthly Notices of the Royal Astronomical Society ; 1977,181 : 375-389.
  • 2NAYROLOES B, TOUZOT G, VILLON P. Generalizing the finite element method: diffuse approximation and diffuse elements[J]. Computational Mechanics, 1992,10:307-318.
  • 3BELYTSCHKO T, LU Y Y, GU L. Element free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994,37 : 229-256.
  • 4LIU W K,JUN S, ZHANG Y F. Reproducing Kernel Particle Methods[J]. International Journal for Numerical Methods in Fluids, 1995,20: 1081-1106.
  • 5SUKUMAR N, MORAN B, BELYTSCHKO T. The nature element method in solid mechanics[J]. International Journal for Numerical Methods in Engineering, 1998,43 : 839-887.
  • 6LIU G R, GUY T. A point interpolation method for two dimensional solids[J]. International Journal for Numerical Methods in Engineering, 2001,50: 937-951.
  • 7石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 8梁国平,何江衡.广义有限元方法──一类新的逼近空间[J].力学进展,1995,25(4):562-565. 被引量:22
  • 9栾茂田,田荣,杨庆.广义节点有限元法[J].计算力学学报,2000,17(2):192-200. 被引量:21
  • 10邵国建,刘体锋.广义有限元及其应用[J].河海大学学报(自然科学版),2002,30(4):28-31. 被引量:8

二级参考文献13

共引文献167

同被引文献38

  • 1王刚,孙迎丹,叶正寅.无网格算法在多段翼型流动计算中的应用[J].应用力学学报,2004,21(3):63-66. 被引量:6
  • 2隋允康,管昭,杜家政,李栋.位移、应力、尺寸约束下二维连续体的形状优化[J].工程设计学报,2005,12(3):140-147. 被引量:4
  • 3龚曙光,陈艳萍,黄云清.无网格法在形状优化中的应用研究[J].中国机械工程,2006,17(12):1290-1294. 被引量:3
  • 4张希,姚振汉.MLPG法在塑性大变形和应变局部化问题中的应用[J].清华大学学报(自然科学版),2007,47(5):718-721. 被引量:1
  • 5Atluri S N, Liu H T, Han Z D. Meshless local Petrov-Galerkin (MLPG) mixed collocation method for elasticity problems [J]. Computer Modeling in Engineering & Sciences, 2006,14(3) : 141-152.
  • 6Atluri S N, Shen S. The Meshless Local Petrov- Galerkin (MLPG) Method[M]. Tech Science Press, 2002.
  • 7Li Shu, Atluri S N. Topology-optimization of structures based on the MLPG Mixed Collocation Method [J]. Computer Modeling in Engineering & Sciences, 2008,26(1) : 61-74.
  • 8Li Shu, Atluri S N. The MLPG mixed collocation method for material orientation and topology optimization of anisotropie solids and stretures [J].Computer Modeling in Engineering & Sciences, 2008,30 (1) : 37-56.
  • 9lLiuGR,GuYT.无网格法理论及程序设计[M].山东大学出版社,2007.
  • 10Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The Astron1977,8(12):1013-1024.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部