期刊文献+

焊接热输入对高强铝合金接头组织和性能的影响 被引量:30

Effect of heat input on microstructure and mechanical properties of the high strength aluminum alloy welds
下载PDF
导出
摘要 采用MIG焊接工艺对2519高强铝合金进行焊接,研究了焊接热输入对焊缝组织、力学性能以及断裂特征的影响。结果表明,随着焊接热输入的增加,焊缝中心二次枝晶间距随之增加,焊缝中心溶质元素的含量随之减少,时效后焊缝中心析出的θ′相数量随之减少而尺寸随之增加,且晶界共晶组织由不连续短棒状弥散分布转变成长条状连续网络状分布,导致其断裂类型由穿晶断裂转化为沿晶断裂。接头的抗拉强度也随着焊接热输入的增加明显降低,时效后小热输入下接头的强度提升幅度更大。 2519 high strength aluminum alloy was welded with metal inert-gas welding process,and the effect of heat input on the microstructure,mechanical properties and fracture characters of the welds were studied.Results indicate that with the increase of the heat input,the second dendrite arm spacing increase and the content of solute in dendrite core decrease.After aging,the number of θ' phase decrease,but its size increase.And the morphology of the eutectic phase changes from low rod type to long band network type with the increase of heat input,which causes the fracture type from trasngrannular to intergrannular.The tensile strength reduces greatly with the increase of heat input,and the improvement of tensile strength is greater under low heat input condition after aging treatment.
出处 《焊接学报》 EI CAS CSCD 北大核心 2008年第2期17-21,共5页 Transactions of The China Welding Institution
基金 国家"863"高科技资助项目(2002AA305402)
关键词 高强铝合金 热输入 组织 断裂 high strength aluminum alloy heat input microstructure fracture
  • 相关文献

参考文献14

  • 1Kramer L S, Blair T P, Blough S D. Stress-corrosion cracking susceptibility of various product forms of aluminum alloy 2519[J]. Journal of Materials Engineering and Performance, 2002, 11(6):645-650.
  • 2Carter H B, David H E, Ashok S, et al. Transient crack growth behavior in aluminum alloys C415-T8 and 2519-T87[J]. Engineering Fracture Mechanics, 1999, 62(1):1-22.
  • 3Fisher J, James J. Aluminum alloy 2519 in military vehicles [J]. Advanced Material and Processes, 2002, 160(9) : 43-46.
  • 4李慧中,张新明,陈明安,龚敏如,周卓平.2519铝合金焊接接头的组织与性能[J].中国有色金属学报,2004,14(6):956-960. 被引量:55
  • 5Devincent S M, Devletian J H, Gedeon S A. Weld properties of the newly developed 2519-T87 aluminum armor alloy[J]. Welding Journal, 1988, 67(7): 33-43.
  • 6Ganaha T, Pearce B P, Kerr H W. Grain structures in aluminum alloy GTA welds[J]. Metallurgical Transactions A, 1980, 11(8):1351-1359.
  • 7Skatayama. Solidification phenomena of weld metals (1st report). Characteristic solidification morphologies, microstructures and solidification theory[J]. Welding International, 2000, 14(12) :25-37.
  • 8Kurz W, Fisher D J. Dendrite growth at the limit of stability: tip radius and spacing [J]. Acta Metallurgica, 1981,29(1): 11-20.
  • 9Norman A F, Drazhner V, Prangnell P B. Effect of welding parameters on the solidification microstructure of autogenous TIG welds in an Al-Cu-Mg-Mn alloy [J]. Materials Science and Engineering A 1999, 259(1):53-64.
  • 10Grong Φystein. Metallurgical modelling of welding [M ]. London 1997.

二级参考文献22

  • 1[1]Carter H B, David H E, Ashok S, et al. Transient crack growth behavior in aluminum alloys C415-T8 and 2519-T87 [J]. Engineering Fracture Mechanics, 1999, 62(1): 1-22.
  • 2[2]Fisher J, James J. Aluminum alloy 2519 in military vehiles[J]. Advanced Materials and Processes, 2002, 160(9): 43 - 46.
  • 3[3]Zhang J, Perez R J. Damping behavior of particulate reinforced 2519 Al metal matrix composites[J]. Scripta Metallurgica et Materialia, 1993, 28(1): 91 -96.
  • 4[4]Carter H B, David H E, Ashok S, et al. Creep crack growth behavior of aluminum alloy 2519(part Ⅰ ): experimental analysis[J]. ASTM Special Technical Publication, 1997, 1297(1): 3-18.
  • 5[5]Kramer L S, Blair T P, Blough S D, et al. Stress-corrosion cracking susceptibility of various product forms of aluminum alloy 2519[J]. Journal of Materials Engineering and Performance, 2002, 11(6): 645-650.
  • 6[7]Dymek S, Dollar M. TEM investigation of age-hardenable A1 2519 alloy subjected to stress corrosion cracking tests[J]. Materials Chemistry and Physics, 2003, 81(2/3): 286-288.
  • 7[8]Tsangarakis N. All modes fracture toughness of two aluminum alloys[J]. Engineering Fracture Mechanics, 1987, 26(3): 313-321.
  • 8[13]Devincent S M, Devletian J H, Gedeon S A. Weld properties of the newly developed 2519-T87 aluminum armor alloy[J]. Welding Journal, 1988(3): 33 - 43.
  • 9[14]Zhang J, Perez R J, Gupta M, et al. Damping behavior of particulate reinforced 2519 Al metal matrix composites [J]. Scripta Metallurgica et Materialia, 1993, 28(1): 91-96.
  • 10[15]Gutierrez A, Lippold J C. A proposed mechanism for equiaxed grain formation along the fusion boundary in aluminum-copper-lithium alloys[J]. Welding Journal, 1998(3): 123 - 132.

共引文献77

同被引文献167

引证文献30

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部