期刊文献+

f-Projective and f-Injective Modules 被引量:1

f-Projective and f-Injective Modules
下载PDF
导出
摘要 Let R be a ring. A fight R-module M is called f-projective if Ext^1 (M, N) = 0 for any f-injective right R-module N. We prove that (F-proj,F-inj) is a complete cotorsion theory, where (F-proj (F-inj) denotes the class of all f-projective (f-injective) right R-modules. Semihereditary rings, von Neumann regular rings and coherent rings are characterized in terms of f-projective modules and f-injective modules. Let R be a ring. A fight R-module M is called f-projective if Ext^1 (M, N) = 0 for any f-injective right R-module N. We prove that (F-proj,F-inj) is a complete cotorsion theory, where (F-proj (F-inj) denotes the class of all f-projective (f-injective) right R-modules. Semihereditary rings, von Neumann regular rings and coherent rings are characterized in terms of f-projective modules and f-injective modules.
作者 GENG Yu-xian
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第1期74-80,共7页 数学研究与评论(英文版)
基金 the Jiangsu Teachers University of Technology of China(No.Kyy06109)
关键词 f-projective module f-injective module finitbly presented cyclic module (pre)en-velope (pre)cover. f-projective module f-injective module finitbly presented cyclic module (pre)en-velope (pre)cover.
  • 相关文献

参考文献16

  • 1ANDERSON F W, FULLER K R. Rings and Categories of Modules [M]. Springer-Verlag: New York- Heidelberg, 1974.
  • 2AHSAN J, IBRAHIM A S. Some hgmological characterizations of regular rings [J]. Comm. Algebra, 1982, 10(9): 887-912.
  • 3COLBY R R. Rings which have fiat injective modules [J]. J. Algebra, 1975, 35: 239-252.
  • 4DAMIANO R F. Coflat rings and modules [J]. Pacific J.Math.,1979, 81(2): 349-369.
  • 5DING Nan-qing. On envelopes with the unique mapping property [J]. Comm. Algebra, 1996, 24(4): 1459- 1470.
  • 6ENOCHS E E, JENDA O M G. Relative Homological Algebra [M]. Walter de Gruyter & Co., Berlin, 2000.
  • 7EKLOF P C, TRLIFAJ J. How to make Ext vanish [J]. Bull. London Math. Soc., 2001, 33(1): 41-51.
  • 8GUPTA R N. On f-injective modules and semi-hereditary rings [J]. Proc. Nat. Inst. Sci. India Part A, 1969, 35: 323-328.
  • 9LAM T Y. Lectures on Modules and Rings [M]. Springer-Verlag, New York, 1999.
  • 10MAO Li-xin, DING Nan-qing. Notes on cotorsion modules [J]. Comm. Algebra, 2005, 33(1): 349-360.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部