期刊文献+

有限宽度背景中的啁啾灰孤子 被引量:1

Chirped Gray Soliton with Finite-width Background Wave
下载PDF
导出
摘要 基于在正常色散区的变系数非线性薛定谔方程,考虑一个带有微扰的参数渐减光纤系统,并利用数值模拟方法,对超高斯型有限宽度背景波和有限宽度背景中啁啾灰孤子的传输进行详细地研究。结果表明,超高斯背景波可以在带有微扰的参数渐减光纤系统中不受负载啁啾灰孤子的影响而稳定传输。当取背景波脉宽与啁啾孤子的初始脉宽比例大于或等于50时,有限宽度背景中啁啾灰孤子的数值结果基本与精确解相吻合。即使选取的背景波脉宽不宽,有限宽度背景中的啁啾灰脉冲仍可以很好的保持其孤子性质。 Based on the nonlinear Schroedinger equation with variable coefficients in normal dispersive regime, we consider a parameter-decreasing fiber system with small perturbation. By numerical simulation, we analyze in detail the propagation of finite-width super-Gaussian background wave and chirped gray soliton superimposed upon finite-width background wave. The result shows that super-Gaussian background wave can stably propagate in parameter-decreasing fiber system with small perturbation, even though chirped gray soliton is superimposed upon it. When the ratio of the width of the background wave to the initial width of chirped gray soliton is equal to or large than 50, the numerical solutions of chirped gray soliton can be in agreement with the exact solution. Even if the width of background wave is not broad enough, chirped gray pulse also maintains its soliton characteristics.
出处 《量子光学学报》 CSCD 北大核心 2008年第1期54-62,共9页 Journal of Quantum Optics
基金 国家自然科学基金(60477026) 山西省自然科学基金(2007011007)
关键词 变系数非线性薛定谔方程 参数渐减光纤 背景波 啁啾灰孤子 nonlinear Schroedinger equation with variable coefficients parameter-decreasing fiber background wave chirped gray soliton
  • 相关文献

参考文献2

二级参考文献48

  • 1[15]ABLOWITZ M J,CLARKSON P A. Soliton, Nonlinear Evolution Equations and Inverse Scattering [M]. Cambridge: Cambridge University Press, 1991.
  • 2[16]XU Z Y, LI L, LI Z H, et al. Soliton interaction under the influence of higher- order effects [J ]. Opt Commun, 2002, 210: 375.
  • 3[17]XU Z Y, LI L, LI Z H, et al. Modulation instability and soliton on a cw background in optical fiber with higher - order effects [J]. PhysRevE, 2003, 67: 026603.
  • 4[18]MATVEEV V B, SALL M A. Darboux Transformations and Solitons [M]. Berlin: Springer, 1991.
  • 5[1]HASEGAWA A, KODAMA Y. Solitons in Optical Communications [ M]. Oxford: Oxford University Press, 1995.
  • 6[2]AGRAWAL G P. Nonlinear Fiber Optics [M]. New York: Academic Press, 1995.
  • 7[3]NAKAZAWA M, et al. Recent progress in soliton transmission technology [J]. Chaos, 2000, 10: 486.
  • 8[4]VINOJ M N, KURIAKOSE V C, PORSEZIAN K. Optical soliton with damping and frequency chirping in fibre media [J]. Chaos Solitons and Fractals, 2001, 12: 2569.
  • 9[5]NAKKEERAN K J. Exact soliton solutions for a family of N coupled nonlinear Schrodinger equations in optical fiber media[J]. Phys Rev E, 2000, 62: 1313.
  • 10[6]NAKKEERAN K J. An exact soliton solution for an ever - aged dispersion - managed fibre system equation [ J ]. Phys A: Math Gen, 2001, 34: 5111.

共引文献2

同被引文献24

  • 1SCOTT-RUSSELL J. Report on Waves [m]. Proc Roy Soc Edinburgh. 1844, 319-320.
  • 2DMITRY V. SKRYABIN, WILLIAM J. FIRTH. Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media [J]. Phys Rep, 1998, 58(33): 3916-3930.
  • 3KODAMA Y, HASEGAWA A. Amplification and Reshaping of Optical Solitons in Glass Fiber [J]. Opt Lett, 1982, 7: 339-441.
  • 4MOLLENAUER L F, STOLEN R H, GORDON J P. Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers [J]. Phys Rev Lett, 1980, 45(13): 1095-1098.
  • 5ZAKHAROV V E, SHABAT A B. Exact theory of Two-dimensional Self-focusing and One-dimensional Self- modulation of Waves in Nonlinear Media[J]. Sov Phys JETP, 1972, 34(23): 62-69.
  • 6ZAKHAROV V E, SHABAT A B. Interaction Between Solitons in a Stable Medium [J]. Soy Phys JETP, 1972, 37: 823-828.
  • 7BELANGER P A, GAGNON L, PARE C. Solitary Pulses in an Amplified Nonlinear Dispersive Medium [J]. Opt Lett, 1989, 14(17): 943-945.
  • 8GAGNON L, BELANGER P A. Adiabatic Amplification of Optical Solitons [J]. Phys Rev A, 1991, 43(11) : 6187- 6193.
  • 9ZHONGHAO LI, LULI, HUIPING TIAN, et al. Nwe Types of Solitary Wave Solutions for the Higher Order Nonlinear Schrodinger Equation [J]. Phys Rev Lett, 2000, 84( 18): 4096-4099.
  • 10FANG F, XIAO Y. Stability of Chirped Bright and Dark Soliton-like Solutions of the Cubic Complex Ginzburg Landau Equation with Variable Coefficients [J]. Opt Commu, 2006, 268(2): 305-310.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部