摘要
基于在正常色散区的变系数非线性薛定谔方程,考虑一个带有微扰的参数渐减光纤系统,并利用数值模拟方法,对超高斯型有限宽度背景波和有限宽度背景中啁啾灰孤子的传输进行详细地研究。结果表明,超高斯背景波可以在带有微扰的参数渐减光纤系统中不受负载啁啾灰孤子的影响而稳定传输。当取背景波脉宽与啁啾孤子的初始脉宽比例大于或等于50时,有限宽度背景中啁啾灰孤子的数值结果基本与精确解相吻合。即使选取的背景波脉宽不宽,有限宽度背景中的啁啾灰脉冲仍可以很好的保持其孤子性质。
Based on the nonlinear Schroedinger equation with variable coefficients in normal dispersive regime, we consider a parameter-decreasing fiber system with small perturbation. By numerical simulation, we analyze in detail the propagation of finite-width super-Gaussian background wave and chirped gray soliton superimposed upon finite-width background wave. The result shows that super-Gaussian background wave can stably propagate in parameter-decreasing fiber system with small perturbation, even though chirped gray soliton is superimposed upon it. When the ratio of the width of the background wave to the initial width of chirped gray soliton is equal to or large than 50, the numerical solutions of chirped gray soliton can be in agreement with the exact solution. Even if the width of background wave is not broad enough, chirped gray pulse also maintains its soliton characteristics.
出处
《量子光学学报》
CSCD
北大核心
2008年第1期54-62,共9页
Journal of Quantum Optics
基金
国家自然科学基金(60477026)
山西省自然科学基金(2007011007)
关键词
变系数非线性薛定谔方程
参数渐减光纤
背景波
啁啾灰孤子
nonlinear Schroedinger equation with variable coefficients
parameter-decreasing fiber
background wave
chirped gray soliton