期刊文献+

超导涡旋系统的非平衡态相变 被引量:1

Non-equilibrium Phase Transitions in Superconducting System
下载PDF
导出
摘要 利用三维各向异性XY模型和电阻分流结动力学,研究了较强钉扎势下第二类层状超导体涡旋系统的非平衡态相变.结果发现,平衡态的涡旋玻璃相可在电流驱动下转变为运动玻璃相.在低温下系统经历了三次相变:随电流的增加,系统首先从运动涡旋玻璃相转变为运动Bragg玻璃相,再转变为运动Smectic相,最后融化为运动液体相. The non-equilibrium phase transitions of vortex matter in type Ⅱ superconductor are studied within three-dimension anisotropic XY model by resistively-shunted junction (RSJ) dynamics. It is found that the static vortex glass phase can he transformed into the moving vortex glass in the presence of external current. At low temperature, the system undergoes three phase transitions. With the increase of the current, from the moving vortex glass, the system is first driven to the moving Bragg glass, then to the moving Smectic, and finally melts to the moving liquid.
机构地区 浙江大学物理系
出处 《安徽师范大学学报(自然科学版)》 CAS 2008年第1期1-5,共5页 Journal of Anhui Normal University(Natural Science)
基金 国家自然科学基金项目(1027406710574107)
关键词 超导体 XY模型 蜗旋 非平衡态相变 superconductor XY model vortex non-equilibrium phase transitions
  • 相关文献

参考文献14

  • 1SAFAR H. Vortex dynamics below the flux-lattice melting transition in YBa2Cu3Oγ-δ[J]. Phys Rew, 1995,B52:6211.
  • 2BHATTACHARYA S,HIGGINS M J. Dynamics of a disordered flux line lattice[J]. Phys Rev Lett, 1993, 70:2617.
  • 3PARDD F, F Dela Cruz, GAMMEL P L, BUCHER E, BISHOP D J. Observation of smeetic and moving-Bragg-glass phases in flowing vortex lattices[J]. Nature (London),1998,396:348.
  • 4TROYANOVSKI A M, AARTS J, KES P H. Collective and plastic vortex motion in superconductors at high flux densities[J]. Nature (London), 1999,399: 665.
  • 5KOSHELEV A E, VINOKUR V M. Dynamic melting of the vortex lattice[J]. Phys Rev Lett, 1994,73:3580.
  • 6GIAMARCHI T, P Le Doussal. Moving glass phase of driven lattices[J]. Phys Rev Lett, 1996,76:3408.
  • 7SCHEIDL S, VINOKUR V M. Dynamic melting and decoupling of the vortex lattice in layered superconductors[J]. Phys Rev, 1998,1357: 13800.
  • 8NARAYAN O, FISHER D. Threshold critical dynamics of driven interfaces in random media[J]. Phys Rev, 1993, B48:7030.
  • 9GIAMARCHI T, P Le Doussal. Elastic theory of pinned flux lattices[J]. Phys Rev Lett, 1994,72:1530.
  • 10GIAMARCHI T, BHATTACHARYA S. Vortex phases in type-Ⅱ superconductors[J], cond-mat/0111052,2001.

同被引文献20

  • 1陈庆虎,阮永红.量子点中双极化子稳定性的研究[J].安徽师范大学学报(自然科学版),2005,28(1):1-4. 被引量:1
  • 2MAI J, VON Niessen W. The CO + O2 reaction on metal surfaces. Simulation and mean-field theory: The influence of diffusion[J]. J Chem Phys, 1990,93 : 3685.
  • 3TAMMARO M, SABELLA M, EVANS J W. Hybrid treatment of spatio-temporal behavior in surface reactions with coexisting immobile and highly mobile reactants[J]. J Chem Phys, 1995,103:10277.
  • 4KUZOVKOV V N, KORTLuKE O, VON Niessen W. Kinetic oscillations in the catalytic CO oxidation on Pt single crystal surfaces: theory and simulation[J]. J Chem Phys, 1998,108:5571 - 5580.
  • 5GELTEN R J, JANSEN A P J, VAN Santen R A. Monte Carlo simulations of a surface reaction model showing spatio - temporal pattern formations and oscillations[J]. J Chem Phvs 1998,108:5921-5934.
  • 6ZHDANOV V p. Monte Carlo simulations of oscillations, chaos and pattern formation in heterogeneous catalytic reactions[.l ]. Surf Sci Rep, 2002,45 : 231 - 326.
  • 7ALBANO E V. The Mollie Carlo simulation method: a powerful tool for the study of reaction processes[J]. Heterog Chem Rev, 1996,3:389.
  • 8ZIFF R M, GULARI E, BRSHAD Y. Kinetic phase transitions in an irreversible surface-reaction model[J]. Phys Rev Lett, 1986,56 : 2553 - 2556.
  • 9EHSASI M, MATLOCH M, FRANK O. Steady and nonsteady rates of reaction in a heterogencously catalyzed reaction : Oxidation of CO on platinum, experiments and simulations[J]. J Chem Phys, 1989,91:4949 - 4960.
  • 10JENSEN I, FOGEDBY H C. Kinetic phase transitions in a surface-reaction model with diffusion: Computer simulations and mean-field theory [J ]. Phys Rev A, 1990,42 : 1969 - 1975.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部